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We study, both numerically and theoretically, the relationship between the
random Lyapunov exponent of a family of area preserving diffeomorphisms
of the 2-sphere and the mean of the Lyapunov exponents of the individual
members. The motivation for this study is the hope that a rich enough family of
diffeomorphisms will always have members with positive Lyapunov exponents,
that is to say, positive entropy. At question is what sort of notion of richness
would make such a conclusion valid. One type of richness of a family—
invariance under the left action of SO(n+1)—occurs naturally in the context of
volume preserving diffeomorphisms of the n-sphere. Based on some positive
results for families linear maps obtained by Dedieu and Shub, we investigate the
exponents of such a family on the 2-sphere. Again motivated by the linear case,
we investigate whether there is in fact a lower bound for the mean of the
Lyapunov exponents in terms of the random exponents (with respect to the
push-forward of Haar measure on SO(3)) in such a family. The family Fe that
we study contains a twist map with stretching parameter e. In the family Fe, we
find strong numerical evidence for the existence of such a lower bound on mean
Lyapunov exponents, when the values of the stretching parameter e are not too
small. Even moderate values of e like e \ 10 are enough to have an average of
the metric entropy larger than that of the random map. For small e the
estimated average entropy seems positive but is definitely much less than the one
of the random map. The numerical evidence is in favor of the existence of
exponentially small lower and upper bounds (in the present example, with an



analytic family). Finally, the effect of a small randomization of fixed size d of
the individual elements of the family Fe is considered. Now the mean of the
local random exponents of the family is indeed asymptotic to the random
exponent of the entire family as e tends to infinity.

KEY WORDS: Lyapunov estimates; random diffeomorphism; twist maps; rich
families.

1. INTRODUCTION

Numerical experiments with area-preserving surface diffeomorphisms often
produce the following dynamical picture: elliptical islands floating in
ergodic seas. A reasonable guess is that these ergodic seas typically have
positive measure, and further, that the Lyapunov exponents on these seas
are on average nonzero. An example of tiny elliptical islands in the context
of differential equations can be found in ref. 1, where all rough numeric
tests are in favor of ergodic behavior.

In this paper, we add to the pile of experimental evidence in favor of
this conjecture. We also discuss a possible theoretical approach to finding
positive Lyapunov exponents in certain families of area-preserving diffeo-
morphisms of the sphere S2. The possibility of such an approach was dis-
cussed in ref. 2. The families we consider are not obtained from a specific
set of equations, but from the following construction. Let f: S2

Q S2 be an
area-preserving diffeomorphism of the round sphere, and let SO(3) be the
isometry group of S2. Let

F={g p f | g ¥ SO(3)}

be the left SO(3)-coset of f in Diff(S2), and let n be the push-forward of
Haar measure on SO(3) to F. Provided that f is not itself an isometry, the
family F has nonzero random Lyapunov exponents with respect to n (see
Proposition 2.2 later). The question this paper addresses is whether these
random exponents can somehow be connected to the Lyapunov exponents
of individual members of F, at least on n-average.

To test whether there might be such a connection, we chose f to be a
twist map, all of whose Lyapunov exponents are zero. The resulting family
F has similarities to the standard family on the 2-torus. The dynamics of
the individual elements of F and how they depend on parameters is an
interesting topic, but we only study here some key properties in the case of
small e. We mainly focus on two quantities, the random exponent R(n) and
the average exponent L(n), which we now define.

Let m be Lebesgue measure on S2 normalized to be a probability
measure. Suppose for now that n is an arbitrary Borel probability measure
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supported on a subset F of Diffm(S2), the space of m-preserving diffeo-
morphisms of S2. For f ¥ F, the largest Lyapunov of f at x ¥ S2 is found
by computing the limit:

lim
n Q .

1
n

log ||Tx fn||=: l1(x, f), (1)

which exists for m-almost every x by the subadditive ergodic theorem. We
define the average exponent of f to be

l(f)=F
S2

l1(x, f) dm(x) (2)

and the average exponent of n to be

L(n)=F
Diff r

m(S2)
l(f) dn(f). (3)

Rather than iterate a single diffeomorphism f ¥ F, we might choose
instead a sequence of diffeomorphisms {f1, f2,...} … F and form their
composition:

f (n) :=fn p fn − 1 p · · · p f1.

If the sequence is chosen to be independent and identically distributed with
respect to n, then almost surely the limit

lim
n Q .

1
n

log ||Tx f (n)||=: R(x, (fi)
.

1 , n) (4)

will exist, for m-almost every x. (This too follows from the subadditive
ergodic theorem, applied in the appropriate context.) Further, the integral
of R(x, (fi)

.

1 , n) with respect to m is almost surely independent of the
sequence (fi)

.

1 . We define the random exponent of n to be this integral:

R(n)=F
S2

R(x, (fi)
.

1 , n) dm(x), (5)

(see Kifer for an introduction to the subject of random diffeomorphisms
and their exponents. We also give a self-contained introduction in Sec-
tion 2). The random exponent R(n) is usually positive, unless n is fairly
degenerate. (3)
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The quantity L(n) is mysterious from a computational perspective, but
useful from a dynamical one. The quantity R(n) is relatively easy to esti-
mate and is often positive.

Our goal is to understand in general if there is a notion of richness for
a probability measure n on the volume preserving diffeomorphisms of a
closed manifold M such that the positivity of R(n) implies the positivity
of L(n). Here we are investigating whether the SO(3) invariance of the
measure n on Diffm(S2) might provide such a notion of richness. In ref. 2
we asked if even more might hold, that we might bound L(n) from below in
terms of R(n).

Question 1.1. Is there a positive constant C—perhaps 1—such that
L(n) \ CR(n)?

Some motivation for Question 1.1 can be found in similar question for
the iterates of linear maps (see ref. 4 where an affirmative answer to the
analogue of Question 1.1 is proven with C=1). In Section 3, we describe a
theoretical framework in which to address Question 1.1 and related ques-
tions. We discuss the linear case in Section 4.

Returning to the specific family of diffeomorphisms mentioned earlier,
we now describe the experiment in more detail.

For e > 0, we define a one-parameter family of twist maps fe as
follows. Express S2 as the sphere of radius 1/2 centered at (0, 0) in R × C,
so that the coordinates (r, z) ¥ S2 satisfy the equation

|r|2+|z|2=1/4.

In these coordinates define a twist map fe: S2
Q S2, for e > 0, by

fe(r, z)=(r, exp(2pi(r+1/2) e) z).

Let Fe be the orbit SO(3) fe. Let n be the push-forward of Haar measure
on SO(3). We denote the resulting random and average Lyapunov expo-
nents by R(e) and L(e), respectively.

The numerical results are described in Section 6. To summarize these
results, it appears that the inequality L(e) \ R(e) is satisfied for large e, and
it is definitely not satisfied for small e. We now have rigorous results to
confirm some of these observations. The strongest of these results is proved
in Section 7: for e close to 0, there is no C > 0 satisfying the inequality in
Question 1.1: in fact, we show in Corollary 7.7 that for small e, L(e) is less
than e3 ’ R(e)3/2. The numerics support an upper bound on L(e) that is
exponentially small, and we show in Theorem 7.6 that on most of Fe this is
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indeed the case. On the other hand, L(e) does appear to be positive for
positive e in all of the range where we can meaningfully compute. Section 7
also contains a study of the bifurcation structure of fixed points inside the
family Fe. We include this analysis because it sheds light on where, in both
Fe and S2, new elliptic periodic points and their surrounding islands are
produced. Homoclinic bifurcations also give rise to horseshoes, which are
associated (at least heuristically) with positive measure sets with nonzero
exponents.

For the case of large e, we show in Section 8, that an inequality like
that in Question 1.1 is satisfied when a small amount of noise is introduced.
More precisely, we first prove in Section 3 some results about the quantities
R(e) and L(e) and a third quantity R(e, d), which measures the exponents
of the ‘‘in-between’’ process in which each element of Fe has added noise in
a d-ball inside Fe (see Section 3 for details). In particular, we prove that
any element h of a family F=SO(3) f described above will have average
d-diffused exponents R(h, n, d) that are positive, unless f is an isometry. In
addition, there exists a stationary measure mh, d for such a process on the
projective bundle PS2 that is absolutely continuous with respect to Liouville
measure and projects to Lebesgue measure m on S2; this measure is unique
among stationary measures with these properties and is the unique fixed
point of a ‘‘simple’’ linear operator. The integrated measure

md=F
F

mh, d dn(h)

determines R(n, d), which is the average of the d-diffused exponents
R(h, n, d) over h ¥ F. Whenever md is equal to Lebesgue measure m, we
have the equality: R(n, d)=L(n). For the family Fe, denote by me, d this
integrated measure. In Section 8, we prove (Theorem 8.1) that for any
d > 0, lime Q . me, d=m. Using this result, we prove that if enough noise is
introduced, then the inequality in Question 1.1 is satisfied as e Q .; in
particular, we show in Corollary 8.2 that R(e, d) − R(e) tends to 0 as d Q 0
and e Q . sufficiently quickly, for instance e > d−25. Results of a similar
nature for the standard family were obtained by Carleson and Spencer (5)

and are described in Section 8 later.
We suspect that a further study of these measures md would be

interesting. Even for an SO(n)- or SU(n)-invariant family of matrices, the
properties of the analogous ‘‘in-between’’ measures md are, for the most
part, unknown. In Section 4, we discuss what is known about these mea-
sures. For SO(2), we prove that md is Lebesgue measure for all d > 0, and
for SU(n), md is not Lebesgue measure if d is sufficiently small.
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2. BACKGROUND ON RANDOM TRANSFORMATIONS AND

EXPONENTS

In this section we introduce some notation and gather together some
facts and propositions. What we have to say in this section and the next is
standard and can be found for example in refs. 3, 6–10 in most cases in
greater generality. We have outlined proofs here in order to be reasonably
self contained.

If H … Diff(M), and n is a probability measure on H, then (H, n)
generates a random process given by selecting an independent, n-distributed
sequence (h i)

.

1 … H and forming the compositions:

h (n)=hn p hn − 1 p · · · p h1.

To study all possible outcomes of this experiment, we introduce the
following auxiliary spaces and transformations: the shift space, H. :=
P.

j=1H, the one-sided shift s: H.
* given by:

s(h1, h2,...)=(h2, h3,...),

and the skew product y: H. × M * given by:

y((h i)
.

1 , x)=(s((hi)
.

1 ), h1(x)).

Then s has a natural invariant measure n., the product measure induced
by n, but a priori y has no preferred invariant measure.

Definition 2.1. Let n be a probability measure on H … Diff(M).
A measure m on M is stationary for the random process given by (H, n) if
any of the following equivalent conditions is satisfied:

1. yg(n. × m)=n. × m

2. evg(n × m)=m, where ev: H× M Q M is the evaluation map:

ev(h, x)=h(x)

3. m a n=m, where a is the convolution operator defined by:

m a n(A)=F
H

m(h−1(A)) dn(h),

for every m-measurable subset A … M.

Stationary measures always exist (6) and are the random analogue of
invariant measures in the nonrandom setting. Part of the focus of this
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paper is to find natural stationary measures in the case where M=T1S2

and H and n are derived from Haar measure on SO(3).
Given an injective linear map A: V Q W between normed vector spaces

we denote by AÄ the induced map from the unit sphere in V to the unit
sphere in W, which is defined by v Q A(v)

||A(v)|| . We use the same notation for
the induced map on the projective space PV. We denote the tangent bundle
of S2 by TS2, the unit tangent bundle by T1S2, and the projective bundle by
PS2. We let m denote the normalized Liouville measure on PS2, so m is a
probability measure which pushes forward under projection to S2 to m. The
fibers of TS2 and PS2 over a point z ¥ S2 are denoted by TzS2 and PzS2.
For any manifolds M, N and differentiable map F: M Q N the derivative
of F at x ¥ M is denoted by TxF; for v ¥ TxM we will usually write ‘‘TFv’’
instead of TxF(v). Finally, we denote by FÄ: T1M Q T1N the map that
covers F and is (TxF)Ä on the fiber over x ¥ M. Since the tangent map to
g ¥ SO(3) preserves unit tangent vectors, we will write ‘‘g’’ for gÄ.

Now let f ¥ Diffm(S2), let F={g p f | g ¥ SO(3)}, and let n be the
push-forward to F of Haar measure on SO(3). Let m be normalized
Liouville measure on PS2. Associated to F we then have the set

FÄ={hÄ | h ¥ F}={g p fÄ | g ¥ SO(3)},

and the measure nÄ, the push-forward to Diff(PS2) of Haar measure on
SO(3). Let s: F.

* , y: F. × S2
* , sÄ: FÄ

.
* , and yÄ: FÄ

. × PS2
* be

the associated auxiliary transformations to the random processes generated
by (F, n) and (FÄ, nÄ) respectively.

Lemma 2.1. The measures m and m are stationary for n and nÄ

respectively.
The transformations y, s, and sÄ are ergodic with respect to n. × m, n.,

and n.

Ä , respectively.

Proof. It is straightforward to check that they are stationary.
Ergodicity is not much harder to check. L

Now we can compute R(n) more explicitly:

Proposition 2.2. Let f ¥ Diffm(S2), let F={g p f | g ¥ SO(3)},
and let n be the push-forward to F of Haar measure on SO(3). Let m be
normalized Liouville measure on PS2, the projective bundle of S2. Then

R(n)=F
PS2

log ||Tfv|| dm(v).

Moreover, R(n) > 0, unless f is an isometry.
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Proof. We first apply Birkhoff ’s Ergodic Theorem to the measure-
preserving transformation yÄ: F.

Ä × PS2
* and the function

k((hiÄ).

1 , v)=log ||Tfv||

to obtain that

lim
p Q .

1
p

log ||Thp · · · Th1(v)||= lim
p Q .

1
p

C
p

j=1
log ||Tf(hjÄ · · · h1Ä(v))||

= lim
p Q .

1
p

C
p − 1

j=0
k(y j

Ä((h iÄ).

1 , v))

=: L((hiÄ).

1 , v)

exists a.e. in F.

Ä × PS2. The integral of this limit L is

F L((hiÄ).

1 , v) d(n.

Ä × m)=F
F

.

Ä × PS2
k d(n.

Ä × m)

=F
PS2

log ||Tfv|| dm(v).

Next, we apply Oseledec’s theorem to the map y: F. × S2
* and the

cocycle ((hi)
.

1 , x) W Txh1. We obtain that for almost all (h i)
.

1 , almost all
x ¥ S2, and for almost all v ¥ T1, xS2, the limit

K((hi)
.

1 , x) := lim
p Q .

1
p

log ||Thp · · · Th1(v)||

exists, is independent of v, and has n. × m-integral equal to R(n). The
function:

K((hi)
.

1 ) :=F
S2

K((hi)
.

1 , x) dm(x)

=F
x ¥ S2

F
u ¥ T1, x S2

lim
p Q .

1
p

log ||Thp · · · Txh1(u)|| du dm(x)

=F
PS2

lim
p Q .

1
p

log ||Thp · · · Th1(v)|| dm(v)
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is s-invariant and has n.-integral equal to R(n); ergodicity of s implies that
it is a.e. constant and therefore equal to R(n). We conclude that

R(n)=F
PS2

log ||Tf(v)|| dm(v).

It remains to see that >PS2 log ||Tfv|| dm(v) > 0 if f is not an isometry.
For this we use the following elementary lemma.

Lemma 2.3. Let A ¥ SL(2, R). Then the Jacobian of AÄ with
respect to Lebesgue measure on S1 is given by:

Jac(AÄ)(v)=||Av||−2,

for v ¥ S1.

Since f preserves m, it follows from this lemma that the Jacobian of fÄ

with respect to m at v ¥ T1S2 is ||Tf(v)||−2. Since TfÄ is a diffeomorphism,

F
PS2

||Tf(v)||−2 dm(v)=F
PS2

Jac(fÄ)(v)

=1.

By Jensen’s inequality,

F
PS2

log ||Tf(v)||−2 dm(v) [ log 1F
PS2

||Tf(v)||−2 dm(v)2

=0

with inequality holding unless log ||Tfv|| is constant and equal to 0.
Rearranging the inequality, we see that, unless f is an isometry, we must
have >PS2 log ||Tf(v)|| dm(v) > 0. L

3. A THEORETICAL FRAMEWORK

3.1. Connecting R(e) to L(e)

In this section, we attempt to interpolate between R(e) and L(e) via a
third quantity, R(e, d), which we call the random d-diffused exponent. When
d is greater than or equal to the radius of SO(3), R(e, d) is equal to R(e); as
d approaches 0, R(e, d) approaches (in lim sup) a lower bound for L(e).
Roughly speaking, R(e, d) is the exponent (averaged over Fe) obtained by
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introducing random perturbations (viewed as noise) of order d to each
element of Fe, staying within the family Fe. In Lemma 3.2 we show that
lim supd Q 0 R(e, d) [ L(e). On the other hand, we derive in Proposition 3.3
a formula for R(e, d):

R(e, d)=F
PS2

log ||Tfv|| dme, d(v).

The probability measure me, d in this formula has nice properties: it projects
to Lebesgue measure m on S2, and is absolutely continuous with respect
to m, with smooth density.

Now, recall (Proposition 2.2) that

R(e)=F
PS2

log ||Tfv|| dm(v).

If it were the case that me, d Q m as d Q 0, then it would follow that:

L(e) \ lim sup
d Q 0

R(e, d)

=lim sup
d Q 0

F
PS2

log ||Tfv|| dme, d(v)

=F
PS2

log ||Tfv|| dm(v)

=R(e).

Hence the properties of this measure me, d are potentially quite interesting
with regard to Question 1.1.

Here we collect some properties of me, d and R(e, d). First of all,
R(e, d) is always positive for d > 0 (in fact, we prove in Corollary 3.4 that
this is true not just on average, but for individual elements of Fe ). In other
words, introducing noise (no matter how small) to an element h ¥ Fe

invariably produces positive exponents.
The measure me, d has additional properties as well. We prove that we

can write:

me, d=F
SO(3)

mg, e, d dg,

where, for each g ¥ SO(3), mg, e, d is the unique probability measure on PS2

with the properties:
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1. mg, e, d is stationary for the d-diffused process about gfe;

2. mg, e, d is absolutely continuous with respect to m, with smooth
density;

3. mg, e, d projects to Lebesgue measure m on S2.

As part of the proof, we show that each measure mg, e, d is the unique fixed
point of a ‘‘simple’’ linear operator.

Finally, from the way me, d is constructed, it follows that me, d shares all
of the symmetries of fe. In particular, the density je, d is invariant under all
rotations that fix the North pole. The further study of these measures mg, e, d

and me, d might be of independent interest. We discuss the linear version of
me, d in Section 4. In Section 8, we examine the behavior of me, d as e Q ..

We now turn to the proofs of assertions 1–3. We first prove a standard
semicontinuity result for random exponents.

Lemma 3.1. Let {c i} be a sequence of probability measures on
H … Diff(M) that converges weakly to a probability measure c. Suppose
that m is stationary for the random process generated by (H, c i), for
every i, ( for example, if H … Diffm(M)). Then

lim sup
ci Q c

R(c i) [ R(c).

Proof. Let an((h i)
.

1 , x)=log ||Txh (n)||. Then an: H. × M Q R is sub-
additive with respect to y. By the subadditive ergodic theorem it then
follows that

R(c)=F
H

. × M
lim
n Q .

1
n

an d(c. × m)

= lim
n Q .

1
n

F
H

. × M
an d(c. × m)

=inf
n

1
n

F
H

. × M
an d(c. × m).

Now for any fixed n we have

lim sup
ci Q c

R(c i) [ lim sup
ci Q c

1
n

F
H

. × M
an d(m × c.

i )

=
1
n

F
H

. × M
an d(m × c.).
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So

lim sup
ci Q c

R(c i) [ inf
n

1
n

F
H

. × M
an d(m × c.)

=R(c). L

We will apply this lemma to the situation where c i is supported on a
small ball in Fe converging, as i Q ., to a Dirac measure supported on an
element of Fe.

Let d > 0, and let Ud be a symmetric d ball around the identity in
SO(3). Give Ud the restriction of Haar measure, normalized to be a prob-
ability measure and similarly for Fg, e, d :=Ud gfe, for every g ¥ SO(3) and
e > 0. We denote this last measure by ng, e, d. Let R(g, e, d)=R(ng, e, d).

Definition 3.1. The (d-)diffused random exponent is the average over
SO(3) of R(g, e, d):

R(e, d)=F
g ¥ SO(3)

R(g, e, d) dn(g).

Lemma 3.2.

lim sup
d Q 0

F
g ¥ SO(3)

R(g, e, d) dg [ L(e).

Proof. Note that limd Q 0 ng, e, d=dgfe
, Dirac measure supported on

gfe. By the previous lemma,

lim sup
d Q 0

R(g, e, d)=lim sup
d Q 0

R(ng, e, d)

[ R(dgfe
)

=l(gfe)

for each g ¥ SO(3), so the same is true for the integral. L

Now let h0: S2
Q S2 be any m-preserving diffeomorphism, and let

H=Udh0. As in the previous section, define the space

HÄ={hÄ | h ¥ H},

and evaluation maps

ev: H× S2
Q S2, evÄ: H× PS2

Q PS2.
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Let nd and ndÄ be the push-forwards of normalized Haar measure to H

and HÄ, respectively. Note that m is stationary for the process generated by
(H, nd).

Proposition 3.3. If h0 is not an isometry, then for fixed d > 0 the
random process on PS2 generated by (HÄ, ndÄ) has a stationary measure
md that is absolutely continuous with smooth density, covers m, and is the
unique such stationary measure.

Moreover,

R(nd)=F
PS2

log ||Th0v|| dmd(v) > 0.

Corollary 3.4. For fixed d > 0, e ] 0, and g ¥ SO(3), the random
process on PS2 generated by (Fg, e, d, ng, e, d) has a stationary measure mg, e, d

that is absolutely continuous with smooth density, covers m, and is the
unique such stationary measure.

Moreover,

R(g, e, d)=F
PS2

log ||Tfev|| dmg, e, d > 0.

Proof of Corollary 3.4. Apply Proposition 3.3 to the case where
h0=gfe.

Proof of Proposition 3.3. Let h0 and d > 0 be given. We break the
proof into steps.

Step 1. Construction of md. Recall that the convolution of a
probability measure p on HÄ and a probability measure m on PS2 is a
probability measure p a m on PS2 defined by

p a m(E)=F
HÄ

m(h−1
Ä E) dp(hÄ)

for every m-measurable E ı PS2. That a measure m is stationary for the
measure p is equivalent to the fact that pÄ a m=m. For k > 1 we let
pk a m=p a (pk − 1 a m). For any probability measure m on PS2 any weak
limit of the Cesàro sums 1

n ;n
1 pk a m is a stationary measure for p.

Beginning with a measure m which pushes forward under projection to m

produces an invariant measure by this process with the same property. If
we start with m as Liouville measure on PS2 and p=ndÄ we call this limit-
ing measure md.
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Step 2. md Is Absolutely Continuous, with Smooth Density. For
any measurable set A ı PS2, we have:

md(A)=(ndÄ × md) ev−1
Ä (A)

=(ndÄ × md){(hÄ, v) | hÄ(v) ¥ A}

=F
v ¥ PS2

ndÄ{hÄ | hÄ(v) ¥ A} dmd(v).

Now if the Liouville measure m(A) equals zero, then nd{hÄ | hÄ(v) ¥ A}
must also be zero, for every v ¥ PS2. Thus md(A) is zero. It follows that
md(A) is absolutely continuous with respect to m. So there is a non-nega-
tive integrable function jd defined on PS2 so that for any measurable
A ı PS2,

md(A)=F
A

jd(x) dm(x).

In Lemma 3.6 we will prove that jd satisfies the following formula:

jd(x)=
1

m(B(x, d))
F

h − 1
0Ä B(x, d)

jd(y) dm(y)

=
1

m(B(x, d))
F

B(x, d)
jd(h−1

0Ä z) Jac(h−1
0Ä )(z) dm(z).

It follows now fairly directly that jd is as smooth as h0, since the average
over a d-ball of an L1 function is continuous, and of a Ck function, is Ck+1.

Step 3. R(nd) Satisfies the Integral Formula, and the Exponents
of md Are Nonzero. The argument that R(nd)=>PS2 log ||Th0v|| dmd is
now the same as in the proof of Proposition 2.2, using Birkhoff ’s and
Oseledec’s theorems, where FÄ is replaced by HÄ, n by nd and m by md.

Next we will prove that the largest exponent is positive and from that
we will deduce uniqueness. As in Proposition 2.2, for any h=gh0 ¥ H the
Jacobian of hÄ with respect to md at the vector v in T1S2 is

r(h, v)=
jd(hÄv)

||Thv||2 jd(v)
=

jd(gh0Äv)
||Th0v||2 jd(v)

(6)

provided that jd(v) ] 0.
We claim that the function r(h, v) cannot be nd × md—almost every-

where equal to 1. Suppose for the sake of contradiction that r(h, v)=1 a.e.
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Since jd is continuous, if we fix md-a.e. v, then the function r( · , v) is con-
tinuous. Thus, for md-a.e. v, we must have r(h, v)=1 for every h ¥ Ud.

Next, notice in the expression (6) for r(h, v), that the only term that
depends on g ¥ Ud is the numerator jd(gh0Äv). Rewriting this expression,
we have, for almost every v in the support of jd,

jd(gh0Äv)=||Th0v||2 jd(v), (7)

for every g ¥ Ud. Since md projects to m, and jd is continuous, we have that
for m-a.e. x ¥ S2, the set O={v | jd(v) > 0} is an open, h0Ä-invariant set in
PS2 that intersects almost every fiber. Equation (7) implies jd must be
constant on connected components of O, since varying g inside of Ud, the
vector gh0Äv covers an open neighborhood of h0Äv in PS2.

But, again by Eq. (7), on each such component of O, we must have
that ||Th0 || is constant. Since O intersects almost every fiber of PS2, we
obtain that for almost every x ¥ S2, there exists a connected open set Ix in
the fiber of PS2 on which Txh0 has constant norm. Since h0 preserves area,
we must have ||Txh0 ||=1 for m-a.e. x, contradicting the assumption that h0

is not an isometry.
So r(h, v) is not a.e. equal to 1, and by Jensen’s inequality, we have:

F
H× PS2

log r(h, v) dnd(h) dmd(v) < log F
H× PS2

r(h, v) dnd(h) dmd(v)

=0.

But

R(nd)=F
PS2

log ||Th0v|| dmd(v)

=−
1
2

F
H× PS2

log ||Thv||−2 dnd(h) dmd(v)

=−
1
2

F
H× PS2

log 1 ||Thv||−2 jd(hÄ(v))
jd(v)

2 dnd(h) dmd(v)

=−
1
2

F
H× PS2

log r(h, v) dnd(h) dmd(v)

> 0.

(Here we used the stationarity of md to conclude that the integral of
log(jd(hÄ(v))/jd(v)) is 0.)
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Step 4. md(A) Is Unique. It remains to prove that the measure md

is unique among absolutely continuous stationary measures which cover m,
now that we know that the random Lyapunov exponents are not zero.

Let c be any such measure. Then, as for md, there is a nonnegative
smooth function k such that for any measurable A ı PS2,

c(A)=F
A

k(v) dm(v).

Let cx be the disintegration of c on the fiber T1, xS2. The density of cx with
respect to Lebesgue measure on the fiber T1, xS2 is the restriction of k to the
fiber.

We need the notion of a natural extension of a non-invertible trans-
formation. Let (W, A, p) be a probability space with p-preserving trans-
formation T: W Q W. Let

Ŵ={(..., w−1, w0) ¥ P1
−.W | T(w−i)=w−i+1, -i \ 1}.

Let T̂: Ŵ * be the map:

T̂(..., w−1, w0)=(..., w−1, w0, T(w0)),

and let p̂0: Ŵ Q W be the projection onto the first factor:

p̂0(..., w−1, w0)=w0.

Let Â be the smallest s-algebra on Ŵ so that p̂0 and T̂ are both measur-
able. On (Ŵ, Â), there is a unique probability measure p̂, invariant
under T̂, that pushes forward under p̂ to p. The measure-preserving system
(Ŵ, Â, p̂) * T̂ is called the natural extension of (W, A, p) * T. The natural
extension T̂ is invertible, and ergodic if T is ergodic.

Let y and yÄ be the associated auxiliary maps to the processes gener-
ated by (H, nd) and (HÄ, ndÄ), respectively. The natural extension of yÄ

with respect to the measure n.

Äd × c fibers over the natural extension of y

with respect to n.

d × m; the fiber over ((h i)
.

−., x) is T1, xS2. For n̂.-almost
every h=(hi)

.

−. and almost every fiber T1, xS2 there is a measure ĉh, x which
is the disintegration of n. × c5 along the fiber. Note that the extension
n. × c5 is determined by this system of measures, and therefore so is c.

By (ref. 9, Proposition 1.1, p. 131), if (h=(hi)
.

−., x) ¥ H.

−. × S2=
H. × S25 , then ĉx is the limit of the push-forwards:

ĉh, x= lim
n Q .

(h−nÄ · · · h1Ä)g (ch − 1
−n · · · h − 1

1 (x)). (8)
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Lemma 3.5. The limit (8) does not depend on the initial choice of
absolutely continuous stationary measure c covering m.

Proof. The average exponents of y are nonzero, so the average
exponents of ŷ are also nonzero. It is easy to see that y is ergodic, and thus,
so is ŷ and the exponents of ŷ are in fact nonzero m-a.e.

Let u(h, x) ¥ PS2 be the unstable Lyapunov direction for ŷ over (h, x).
For every E > 0, there exists an n > 0, and a set G … H.

−. × S2 such that

• n.

−.m(G) > 1 − E

• for every (h, x) ¥ G, the ch, x-measure of an E-neighborhood of
u(h, x) in T1, xS2 is at least 1 − E.

It follows that the limit in (8) is concentrated on the point u(h, x). L

Thus the natural extension of y and c is the same as the natural exten-
sion of y and md, so y and md are themselves equal. L

The next lemma completes the proof of Proposition 3.3.

Lemma 3.6. Let c be an absolutely continuous measure with respect
to m on PS2 that is stationary for nd. Then the density function k defining c

satisfies

k(x)=
1

m(B(x, d))
F

h − 1
0Ä B(x, d)

k(y) dm(y).

Proof. For any measurable set A ı PS2, we have:

F
A

k(y) dm(y)=c(A)

=nd × c(ev−1
Ä (A))

=nd × c{(h, y) ¥ HÄ × PS2 | h(y) ¥ A}

=F
g ¥ Ud

c{h−1
0Ä g−1A} dnd(g)

=F
g ¥ Ud

F
h − 1

0Ä g − 1A
k(y) dm(y) dnd(g)

=F
g ¥ Ud

F
A

k(h−1
0Ä g−1(x)) J(h−1

0Ä g−1(x))−1 dm(x) dnd(g)

=F
A

F
g ¥ Ud

k(h−1
0Ä g−1(x)) J(h−1

0Ä g−1(x))−1 dnd(g) dm(x).
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So,

k(x)=F
g ¥ Ud

k(h−1
0Ä g−1(x) J(h−1

0Ä g−1(x))−1 dnd(g).

Since the integrand only depends on the point x ¥ PS2 we push the measure
nd forward to PS2, use that J(g)−1=1 and that Haar measure on SO(3)
pushes forward to Liouville measure on PS2 to obtain

k(x)=
1

m(B(x, d))
F

y ¥ B(x, d)
k(h−1

0Ä (y)) J(h−1
0Ä (y)) dm(y).

Finally, changing variables one more time, gives:

k(x)=
1

m(B(x, d))
F

h − 1
0Ä B(x, d)

k(y) dm(y). L

This completes the proof of Proposition 3.3.

Returning to discussion of the family Fe, we have verified that prop-
erties 1–3 hold for the measures mg, e, d. Now let

me, d=F
g ¥ SO(3)

mg, e, d dg.

Since

F
SO(3)

R(g, e, d) dg=F
PS2

log ||Tfv|| dmg, e, d(v) dg,

it follows from Corollary 3.4 and Lemma 3.2 that:

Proposition 3.7.

L(e) \ lim sup
d Q 0

F
PS2

log ||Tfe(x) v|| dme, d.

3.2. What Is this Measure me, d ?

For the family of twist maps Fe under consideration, we prove in
Section 7 that the answer to Question 1.1 is ‘‘no,’’ and for small e, we have
L(e) < R(e). It then follows from Proposition 3.7 that for small e, Lebesgue
measure m is not a weak limit of me, d as d Q 0. At the opposite extreme, we

102 Ledrappier et al.



show in Section 8 that as e tends to infinity, the measures me, d do approach
Lebesgue measure, for d > 0 fixed. We hope that a future experiment will
reveal more precisely how these measures behave in d, for moderate values
of e. As will be seen in Section 6, the tiny differences between L(e) and R(e)
for moderate and large values of e, are expected to give rise to numerical
difficulties in estimating the behavior with respect to d.

In Section 4, we show that in SO(2)-invariant families of 2 × 2 matri-
ces, if md is the analogous ‘‘in-between’’ measure, averaged over the family,
then md is Lebesgue measure on S1, for all d > 0. On the other hand, we
also show that for unitarily-invariant families, as d Q 0, the md do not
approach the natural unitarily invariant measure on the appropriate
Grassmannian manifold, but instead they limit on an even ‘‘better’’
measure, in the sense that this measure forces the (strict) inequality L > R.
We describe the construction of md for matrices in Section 4.

4. THE LINEAR CASE

Question 1.1 was originally motivated by a result of Dedieu–Shub
about random and deterministic exponents for families of matrices. In this
section, we describe these results and apply the framework of the previous
section to the matrix setting.

Let L i be a sequence of linear maps mapping finite dimensional
normed vector spaces Vi to Vi+1 for i ¥ N. Let v ¥ V0 0{0}. If the limit
lim 1

k log ||Lk − 1 · · · L0(v)|| exists it is called a Lyapunov exponent of the
sequence. It is easy to see that if two vectors have the same exponent then
so does every vector in the space spanned by them. It follows that there are
at most dim(V0) exponents. We denote them lj where j [ k [ dim(V0). We
order the l i so that l i \ l i+1.

Given a probability measure m on GL(n, C), the space of invertible
n × n complex matrices, we may form infinite sequences of elements chosen
at random from m by taking the product measure on GL(n, C)N. Thus we
may also talk about the Lyapunov exponents of sequences or almost all
sequences in GL(n, C)N.

For measures m on GL(n, C) satisfying a mild integrability condition,
we have, by Oseledec’s Theorem, n Lyapunov exponents r1 \ r2 \ · · · \

rn \ − . such that, for almost every sequence · · · gk · · · g1 ¥ GL(n, C), the
limit

lim
1
k

log ||gk · · · g1v||

exists for every v ¥ Cn 0{0} and equals one of the ri, i=1 · · · n, see
Gol’dsheid and Margulis (10) or Ruelle (11) or Oseledec. (12) We may call the

Random Versus Deterministic Exponents 103



numbers r1,..., rn random Lyapunov exponents or even just random expo-
nents. If the measure is concentrated on a point A, these numbers:

l i(A)=lim
1
n

log ||Anv||, i=1 ... n,

are log |e1 |,..., log |en |, where ei(A)=ei, i=1 ... n, are the eigenvalues of A
written with multiplicity and |e1 | \ |e2 | \ · · · \ |en |.

The integrability condition for Oseledec’s Theorem is

g ¥ GL(n, C) Q log+(||g||) is m-integrable

where for a real valued function f, f+=max[0, f]. Here we will assume
more so that all our integrals are defined and finite, namely:

g ¥ GL(n, C) Q log+(||g||) and log+(||g−1||) are m-integrable. (f)

In this matrix setting, there are rigorous lower bounds for the average
exponents (=logarithms of moduli of eigenvalues) of unitarily-invariant
families in GL(n, C). In ref. 4, the following bound is proved:

Theorem 4.1 (ref. 4). If m is a unitarily invariant measure on
GL(n, C) satisfying (f) then, for k=1,..., n,

F
A ¥ GL(n, C)

C
k

i=1
log |l i(A)| dm(A) \ C

k

i=1
ri.

By unitary invariance we mean m(U(X))=m(X) for all unitary trans-
formations U ¥ U(n, C) and all m-measurable X … GL(n, C).

We can rephrase a special case of this theorem in a form similar
to Question 1.1. Fix A ¥ GL(n, C). As above, let n be normalized Haar
measure on U(n, C), and also denote by n the push-forward of n to the
coset U(n, C) A … GL(n, C). Let R(A)=r1(A) be the largest random
exponent of n, and let

L(A)=F
B ¥ U(n, C) A

log |e1(B)| dn(B).

Then we have:

Corollary 4.2 (ref. 4). For n \ 2, and for any A ¥ GL(n, C),

L(A) \ R(A).

Equality holds if and only if A ¥ U(n, C).
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Thus non-zero Lyapunov exponents for the family, i.e., non-zero
random exponents, implies that at least some of the individual linear maps
have non-zero exponents, i.e., eigenvalues of modulus not equal to 1.
Hence the question that we posed for diffeomorphisms has a positive
answer for sufficiently rich (i.e., unitarily-invariant) families of matrices.

Remark 4.3. Theorem 4.1 is not true for general measures on
GL(n, C) or GL(n, R) even for n=2. Consider

A1=R1 0
1 1

S , A2=R1 1
0 1

S ,

and give probability 1/2 to each. The left hand integral is zero but as is
easily seen the right hand sum is positive. So, in this case the inequality
goes the other way. We do not know a characterization of measures which
make Theorem 4.1 valid.

We expect similar results for orthogonally invariant probability mea-
sures on GL(n, R) but the only case in which such a result has been proved
is in dimension 2, where we have:

Theorem 4.4 (ref. 4). Let m be a probability measure on GL(2, R)
satisfying

g ¥ GL(2, R) Q log+(||g||) and log+(||g−1||) are m-integrable.

(a) If m is a SO(2, R) invariant measure on GL+(2, R) then,

F
A ¥ GL+(2, R)

log |l1(A)| dm(A)=F
A ¥ GL+(2, R)

F
x ¥ S1

log ||Ax|| dx dm(A).

(b) If m is a SO(2, R) invariant measure on GL−(2, R), whose
support is not contained in RO(2, R), i.e., in the set of scalar multiples of
orthogonal matrices, then

F
A ¥ GL −(2, R)

log |l1(A)| dm(A) > F
A ¥ GL −(2, R)

F
x ¥ S1

log ||Ax|| dx dm(A).

Here GL+(2, R) (resp. GL−(2, R)) is the set of invertible matrices
with positive (resp. negative) determinant. To rephrase Theorem 4.4(a), fix
A ¥ GL+(2, R), and let n be the push forward of Haar measure on SO(2, R)
to the coset SO(2, R) A. Let R(A) be the largest random exponent for the
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process induced by n, and let L(A)=>B ¥ SO(2, R) A log |e1(A)| dn(A). The we
have:

Corollary 4.5 (refs. 4 and 13). For any A ¥ GL+(2, R),

L(A)=R(A).

We give an alternate proof of Corollary 4.5 in the following subsection.

4.1. md for Matrices

Let A ¥ GL(n, C) or GL(n, R) and m be the Haar measure on U(n, C)
or SO(n, R), respectively, normalized to be a probability measure. Let G
denote GL(n, C) or GL(n, R). As we did for families of diffeomorphisms in
Section 3, we now interpolate between random products and deterministic
powers of matrices by changing m. Let d > 0 and Gd be the d-neighborhood
of the identity in G. For g ¥ G, Gd gA is a neighborhood of gA in GA. We
normalize Haar measure restricted to Gd and push it forward to Gd gA. Let
us call this measure md, g. Let r1(d, g) be the largest random exponent for
this measure. At the end of this subsection, we prove:

Proposition 4.6. limd Q 0 r1(d, g)=log |e1(gA)|.

Let Gn, k(C) denote the Grassmannian manifold of k dimensional
vector subspaces in Cn, and let m be the natural unitarily invariant proba-
bility measure on Gn, k(C). Any n × n complex matrix acts on the homoge-
neous space Gn, k by left-multiplication. For A ¥ GL(n, C) and P ¥ Gn, k(C),
denote by A | P the restriction of A to the subspace P. Now let md, g be the
stationary measure on the Grassmannian Gn, 1(=CPn − 1) induced by md, g.

Proposition 4.7. r1(d, g)=>P ¥ Gn, 1
log ||(A | P)|| dmd, g.

Let md=>g ¥ G nd, g dm. It follows that:

Proposition 4.8. >g ¥ G l1(gA) dm=limd Q 0 >P ¥ Gn, 1
log ||(A | P)|| dmd.

Now

r1=F
P ¥ Gn, 1

log ||(A | P)|| dm(P).

So a comparison of >g ¥ G l1(gA) dm and r1 can be achieved via an under-
standing of the relationship between m and md. We have two results in this
direction.
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First, recall that inequality in Corollary 4.2 is strict when n \ 2 unless
A is an isometry. So for G=SU(n) the measures md favor the expanding
directions of A as d Q 0. By Proposition 4.8, we obtain the immediate
corollary:

Corollary 4.9. For G=SU(n), n \ 2,

lim
d Q 0

md ] m,

unless A is an isometry.

Experimentally the same seems to hold for SO(n) when n > 2, but we
have not checked this very carefully.

By contrast, the equality in Corollary 4.5 is consistent with
limd Q 0 md=m. In fact, more is true:

Theorem 4.10. For G=SO(2),

md=m,

for all d > 0.

Combined with Proposition 4.8, Theorem 4.10 gives another proof of
Corollary 4.5.

Proof of Proposition 4.6. Following the proof of Lemma 3.2, one
obtains that

log |e1(gA)| \ lim
d Q 0

r1(d, g).

If A is replaced by cA, for c ¥ C0{0}, then both sides of the equality
change by log |c|. So we may assume that |det A|=1, and it will be enough
to prove that log |e1(gA)| [ limd Q 0 r1(d, g) under the hypothesis that
|e1(gA)| > 1.

Let E … Cn be the generalized eigenspace of the eigenvalues of gA
whose modulus equals |e1(gA)|. Then given e > 0, there is a metric on Cn,
a closed cone K … Cn containing E in its interior, and a d > 0 such that, for
any B ¥ GL(n, C) in the d-neighborhood of gA, we have:

1. B(K) … K, and

2. ||Bv|| \ (|e1(gA)| − e) ||v||, for all v ¥ K.
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It follows that, for any e > 0, there is a d > 0 such that,

||Bn · · · B1 || \ (|e1(gA)| − e)n,

for all sequences B1,..., Bn in Ud gA. Hence

r1(d, g) \ log(|e1(gA)| − e),

and so

lim
d Q 0

r1(d, g) \ log |e1(ga)|. L

We now turn to the proof of Theorem 4.10.

Proof of Theorem 4.10. By an argument presented in the proof
of Proposition 4.6, we may assume that det A=1. The projective action
of SL(2, R) on RP1 is conjugate to the standard action on the circle
S1={z ¥ C | |z|=1} by linear fractional transformations. The conjugacy
sends the rotation by h to rotation by 2h. Let f: S1

Q S1 be the linear frac-
tional transformation induced by A, and let F={af | a ¥ S1}. Let

Ua, d={baf | arg(b) ¥ (−d, d)},

and let na, d be normalized Lebesgue measure on Ua, d, pushed forward from
(−d, d). Denote by ma, d the stationary measure on S1 induced by na, d. We
will show that:

md=F
S1

ma, d da

is Lebesgue measure on S1.
The same argument as in the proof of Lemma 3.6 shows that for every

a ¥ S1,

dma, d(z)=ja, d(z) dz,

where

ja, d(z)=
1
2d

F
y ¥ (af) − 1 B(z, d)

ja, d(y) dy,
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and B(z, d)={bz | arg(b) ¥ (−d, d)}. Setting

kd(z)=
1
2d

1B(1, d)(z),

we have that

ja, d(z)=F
y ¥ S1

kd(az̄f(y)) ja, d(y) dy,

where we use z̄ to denote the multiplicative inverse of z ¥ S1. Note that
>S1 kd(z) dz=1.

Consider the following, more general setting. Let k be a non-negative
function on S1 such that > k=1 and > k2 < . (all integrals are with respect
to the normalized Lebesgue measure on S1). For example, k=kd. Let
f: S1

W S1 be a fractional linear transformation, so that we can write, for
|z|=1:

f(z)= C
n \ 0

cnzn.

For a ¥ S1 , define the operator La, f on real functions on S1 by:

La, fj(z)=F k(az̄f(y)) j(y) dy.

The operator La, f is a positive operator, > La, fj=> j. There exists a
unique function ja satisfying La, fja=ja and > ja=1. The function ja is
positive and continuous, upper and positive lower bounds for ja can be
chosen uniformly in a. In the case k=kd, we have ja=ja, d.

Proposition 4.11. We have, for all z ¥ S1, > ja(z) da=1.

The proposition follows directly from the following two claims:

Claim 1. For all m \ 0, all z ¥ S1, > Lm
a, f1(z) da=1.

Claim 2. The sequence 1
n ;n

m=1Lm
a, f1(z) converges to ja(z) in

L1(da, dz) as n Q ..

Claim 2 follows from the ergodic theorem for Markov (i.e., L1=1)
operators applied to the operator k(a, z) Q 1

ja(z) La, f(jak(a, .))(z) and the
initial function 1

ja(z) .
In order to prove Claim 1, we compute, for a function j ¥ L2,

j(z)=;n cnzn, the Fourier coefficients c −

n of the function La, fj. We find,
for n \ 0:

Random Versus Deterministic Exponents 109



c −

n=F z̄nLa, fj(z) dz

=F z̄nk(az̄f(y)) j(y) dy dz

=ank̂(−n) F (f(y))n j(y) dy

=ank̂(−n) F C
k \ 0

c (n)
k ykj(y) dy

=ank̂(−n) C
k \ 0

c (n)
k ck

and, analogously:

c −

−n=a−nk̂(n) C
k \ 0

c (n)
k c−k,

where we wrote (f(z))n=;k \ 0 c (n)
k zk, (f(z))0=1, and k̂ is the Fourier

transform of k.
Iterating these formulas, we obtain for a function j ¥ L2, j(z)=

;n cnzn, the Fourier coefficients c (m)
n of the function Lm

a, fj:

c (m)
n =ank̂(−n) C

n1,..., nm \ 0
(Pm − 1

s=1 ansk̂(−ns)) c (n)
n1

c (n1)
n2

· · · c (nm − 1)
nm

cnm

for n \ 0, and

c (m)
−n =a−nk̂(n) C

n1,..., nm \ 0
(Pm − 1

s=1 a−nsk̂(ns)) c (n)
n1

c (n1)
n2

· · · c (nm − 1)
nm

c−nm

for n [ 0.
To get the Fourier coefficients of the bounded continuous function

> Lm
a, f1(z) da, we integrate in a the Fourier coefficients of the bounded

continuous functions Lm
a, f1(z). In the above sum, all terms vanish, except

the ones with n+n1+ · · · +nm − 1=0. Since all ni have the same sign, the
one nonzero integral corresponds to n=n1= · · · =nm − 1=0. Claim 1
follows. L

Remark 4.12. Theorem 4.10 holds even without randomization.
Suppose that A has determinant equal to 1 and let O vary over SO(2, R).
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Then for almost every O the eigenvalues of OA are either complex with
irrational argument or real and there is one eigenvalue of modulus bigger
than one. In the first case Cesàro sums of the push forward of Lebesgue
measure by OAÄ converge to the unique invariant measure of OAÄ. In the
second case to the Dirac measure supported on the expanding eigenspace.
Call these measures mOA, then > mOA dO is Lebesgue measure. The proof is
the same, but easier.

5. EXPERIMENTAL METHOD

5.1. Haar Measure on SO(3)

It is clear that an element of SO(3) is determined by its axis and angle
of rotation. Here we describe how to pick axis and angle uniformly with
respect to Haar measure on SO(3).

Let S2 be the usual two sphere with measure m. Let S1 be the usual
unit circle of angles from 0 to 2p given the probability measure with density
function (1 − cos h)/(2p). Let S2 × S1 be the product space with the
product measure which we denote by c. There is a natural map
P: S2 × S1

Q SO(3) which maps a vector x and an angle h to the orthogo-
nal transformation which fixes x and rotates by angle h around x according
to the right hand rule. The map P sends (x, 0) to the identity in SO(3) for
all x ¥ S2 and is two to one when h ] 0, (x, h), and (−x, −h) map to the
same point. P maps c to the Haar measure on SO(3). If we identify
(x, h) ’ (−x, −h) we obtain S2 × S1/’ which is a circle bundle over real
projective 2-space. P induces a map P ’: S2 × S1/’ Q SO(3).

Proposition 5.1. P ’ is one-one off of the zero section of S2 × S1/’

and gives a measurable isomorphism between (S2 × S1/’, c) and
(SO(3), Haar).

Proof. That P ’ is one-one off the zero section of S2 × S1/’ is easily
verified.

Fix the standard product metric on S2 × S1, normalized so that each
factor has total volume 1. Normalized Haar measure on SO(3) is
Riemannian volume with respect to the bi-invariant metric we now
describe. The Lie algebra of SO(3) is the space of anti-symmetric matrices
so(3); on this algebra, we put the inner product:

OA, BP=
1

2c2 tr(AB t),
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where c=2p2/3. An orthonormal basis for so(3) is {X, Y, Z}, where

X=R0 0 0

0 0 − c

0 c 0

S , Y=R0 0 − c

0 0 0

c 0 0

S ,

and

Z=R 0 c 0

− c 0 0

0 0 0

S .

(Note [X, Y]=cZ, etc.). In the bi-invariant metric induced by this inner
product, SO(3) has constant sectional curvatures, see ref. 14:

l=
c2

4
=

||[X, Y]||2

4
=

||[X, Z]||2

4
=

||[Y, Z]||2

4
.

The diameter of SO(3) in this metric is r=p/c and the total volume is

p

l
12r −

sin(2 `l r)

`l
2=1.

Let r(x, h) dm(x) dh be the pullback of the volume form on SO(3) to
S2 × S1 under P. To prove that P ’ is an isomorphism, it suffices to show
that r is the density of c, that is, to show that:

r(x, h)=(1 − cos h)/p,

for all (x, h) ¥ S2 × S1.
For any x, y ¥ S2, if N=A × G … S2 × S1 is a product neighborhood

of (x, h) of Lebesgue measure d, then there exists a g ¥ SO(3) such that
N̂=gA × G is a neighborhood of (y, h) of Lebesgue measure d. From the
definition of P, it follows that P(N̂)=gP(N) g−1. Since r(x, h) dm(x) dh is
the pullback of an SO(3)-invariant form, we obtain that for any x, y ¥ S2,
h ¥ S1,

r(x, h)=r(y, h)=: r(h).

Finally, we compute r(h). Since the geodesics of SO(3) through I are
precisely the one-parameter subgroups, the image under P ’ of the curve
t W (p, t) is a geodesic through I of speed 1/c. It follows that for any
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h ¥ (0, p), P ’ sends S2 × (0, h)/’ diffeomorphically onto Bc − 1
h(I)0{0}, the

punctured ball of radius c−1h about the identity in SO(3). The volume of
such a ball is

F
h

0
r(t) dt=vol(Bc − 1

h(I))

=
p

l
12c−1h −

sin(2 `l c−1h)

`l
2

=
1
p

(h − sin h).

By the Fundamental Theorem of Calculus,

r(h)=
1
p

(1 − cos(h)), (9)

which completes the proof. L

We call P or more appropriately P ’ polar coordinates on SO(3).

5.2. Computing Random Exponents

Recall that R(e)=>PS2 log ||Tfev|| dm(v). Using the results of ref. 13 we
can reduce the right hand integral to a one variable integral which we can
then evaluate numerically very accurately. This is how the random Lyapunov
exponents are computed.

Proposition 5.2.

R(e)=F
1
2

0
log(1+(2pex(1 − x))2) dx.

Proof. Consider the ‘‘inverse Archimedean projection’’

Y: (h, x) W (g(x) cos h, g(x) sin h, x − 1
2),

where g(x)=`x(1 − x). This map sends the cylinder C=S1 × [0, 1] onto
the sphere S2 and is area-preserving: the pullback Yg dm is a multiple of the
Lebesgue volume form dh dx on C. The Riemannian metric on S2 pulls
back to the metric:

Ov, wP(h, x)=v tB(x)2 w,
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where

B(x)=[DY(x, h) t DY(x, h)]1/2=Rg(x) 0
0 (2g(x))−1

S .

Setting f̃e=Y−1
p fe p Y, we have that:

f̃e(h, x)=(h+2pex, x).

We next compute:

R(e)=F
PS2

log ||Tfev|| dm(v).

=F
T1C

log ||Tf̃ev|| Yg
Ä dm(v).

In the second equation, the unit tangent bundle T1C and the quantity
||Tf̃ev|| are defined with respect to the Y-pullback Riemannian metric on C.

If v ¥ TC is a unit vector with respect to the pullback metric, then
u=Bv is a unit vector with respect to the Euclidean metric, and ||Tf̃ev||=
||BTf̃eB−1u||Eucl.. Hence we can write:

R(e)=
1

2p
F

(x, h) ¥ C
F

u ¥ S1
log ||BT(x, h) f̃eB−1u||Eucl. dx dh du

=
1

2p
F

(x, h) ¥ C
F

u ¥ S1
log >11

0
4pex(1 − x)

1
2 u>

Eucl.
dx dh du.

For A ¥ SL(2, R), ref. 13 show that

F
u ¥ S1

log ||Au||Eucl. du=log((||A||Eucl.+||A||−1
Eucl.)/2).

Applying this to A=( 1
0

a
1 ), we obtain that

F
u ¥ S1

log ||Au||Eucl. du=1
2 log(1+a2/4).
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It follows that:

R(e)=F
1

0
F

u ¥ S1
log >11

0
4pex(1 − x)

1
2 u>

Eucl.
du dx

=
1
2

F
1

0
log(1+(4pex(1 − x))2/4) dx

=F
1/2

0
log(1+(2pex(1 − x))2) dx.

6. EXPERIMENTAL RESULTS

In this section we describe several numerical experiments and their
results. First we obtain experimental values of R(e) for random maps as
introduced in Section 2. We use a method similar to those we use later to
compute estimates for L(e). Proposition 5.2 allows to us to check the
accuracy of the computed estimate of R(e) against the precise value of R(e)
given there. Then we pass to the computation of L(e). Three different
approaches to the computation of L(e) are presented and discussed which
will allow us to obtain accurate enough values to draw conclusions.
Finally, a sample of numerical estimates of L(e) is shown.

6.1. The Case of Random Maps

To obtain experimental values of R(e) for different e we proceed as in
Proposition 2.2. A random point x in S2 and a random vector t in T1, xS2 is
chosen. A random sequence gi in SO(3) is selected and the derivative of the
maps gi fe are applied to the tangent vector t. The rate of increase of the
logarithm of ||Tx f (n)(t)|| is described, where f (n)=gn fe · · · g1 fe. The results
are the same with probability 1. For brevity, we refer loosely to the use of
formula (4).

Let us describe the selection of random elements:

• An initial point can be described in polar coordinates by a longitude
lx and a latitude bx. The value of lx is chosen at random in [0, 2p] with
uniform probability. Concerning bx, a random value z ¥ [−1, 1] is selected
with uniform probability and then we let bx=sin−1 z. This gives the
uniform probability for x ¥ S2.

• A tangent vector t ¥ T1, xS2 is generated by choosing an angle
k ¥ [0, 2p] with uniform probability and letting t make an angle k with
the unit tangent vector to the latitude through x taken in the positive sense.
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We call this last vector the horizontal vector at x. It is not defined at the
poles, but as the poles have measure zero this is irrelevant in the current
context.

• A random rotation g ¥ SO(3) is determined by an axis and an angle
of rotation. As described in Section 5.1 one can take these as elements in
S2 × S1. It is not necessary to carry out the identification described there.
The axis is selected just as the point x ¥ S2 was above. Let h be the rotation
angle. To select it according to formula (9) pick a random value z ¥ [0, 2p]
with uniform probability and solve the equation z=h − sin(h) for h. The
equation is nothing other than the well known Kepler equation with
eccentricity equal to 1. There are efficient solvers for it.

Then, given initial values of (x, t) one can apply formula (4) to
approximate R(x, e) by using a finite number of iterates, N. In turn, to
approximate R(e) the integral in formula (5) can be computed using a
sample of size M in PS2. Let RM, N(e) be the value obtained.

This value is compared to the one given by Proposition 5.2 which has
been computed using a Simpson method with iterative mesh refinement
(the values of R(e) are shown in Fig. 7). The following limit approxima-
tions are straightforward to derive:

R(e)=
p2

15
e2 −

2p4

315
e4+O(e6) for e Q 0,

R(e)=log(2pe) − 2+
1
2e

+O 1 log(e)
e2

2 for e Q ..

(10)

Skipping the O terms one has relative errors less than 0.01 if e < 0.30 and
e > 3.19, respectively.

Let

DM, N(e)=RM, N(e) − R(e). (11)

We have verified experimentally that DM, N(e) has essentially zero average
and a standard deviation like

sM, N(e) %
o(e)

`MN
,

provided N is large enough.
Tests have been done for several choices of N, M, and e. Using

M=103 and N=10k, k=2,..., 6, the values of o(e) have been estimated
for e ranging from 10−1 to 103. There are no significant differences from
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3κ(ε) and

different realizations

Fig. 1. Scaled intervals which are estimated to contain 99.8% of the results in the case of
random maps and some realizations, as functions of e.

k=4 on. Figure 1 displays, for different values of e, the interval
[−3o(e), 3o(e)] and the results of single runs (i.e., taking M=1) for
N=10k, k=4,..., 9. More concretely, the plotted values are the deviations
D1, N(e) given by formula (11) multiplied by `N.

These results indicate that RM, N(e) and R(e) agree to order 10−5

taking MN=1010. Further checks have been done for larger values of e

(up to e=106) which show no significant variation of o(e) between e=103

and e=106.

6.2. Computing the Lyapunov Exponent in the Deterministic Case

In principle one can follow a similar scheme to compute L(e). That
is, using (1) with a finite number of iterates, N, an approximation of
l1(x, g p fe) is obtained. Then, (2) is computed using a Montecarlo method
sampling x ¥ S2 as described with samples of size Mp. Finally an estimate
of L(e) is computed by applying again a Montecarlo method to (3), sampl-
ing g ¥ SO(3) as explained above and using samples of size Mr. In any case
the samples are taken according to the appropriate measures. The total
number of iterates of the maps and their differential is, hence, MrMpN. Let
us denote by LMr, Mp, N(e) a value obtained in this way.
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Fig. 2. Values of L(e), estimated by using mainly probabilistic methods, as a function of e.
Log10 scales used in both axes. The estimated values of the standard deviations are also
shown. The results displayed here are obtained using N=8192, Mp=5000, Mr=5000. The
dots which appear in the lower left part correspond to the values computed using a different
estimator, given by formula (12) with (m, n)=(2, 0) and are closer to the real values of L(e).
See the text for additional explanations.

Results of this approach are shown in Fig. 2 for different values of e.
They require some explanation. For a fixed g ¥ SO(3) the values of
l1(x, g p fe) are estimated for Mp random values of x. The standard
deviation of the values of l1(x, g p fe) is then computed. This value, sg,
depends of the choice of g. Let sS2 be the average value of sg when a full
sample of g ¥ SO(3) is considered. On the other hand all the MrMp

determinations of l1(x, g p fe) can be used to estimate a global standard
deviation, stotal.

It is clear that sS2 measures the average dispersion of the maximal
Lyapunov exponent when different points are taken in the phase space.
The dispersion depends on the concrete rotation g taken. Typically, for the
g such that relatively small values of the average l(g p fe) of l1(x, g p fe)
on S2 are obtained, it is seen that sg is larger. It should also be mentioned
that the errors in the determination of l1(x, g p fe), due to the finiteness of
the number of iterates N, also contribute to this dispersion.
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On the other hand there is also a dispersion in l(g p fe) when different
g are taken. The standard deviation stotal measures the cumulative effect of
both dispersions.

Now let us make several comments on the observed behavior, based
on computations carried out with quite different values of Mr, Mp, and N.

• The estimates of L(e) are close to R(e) for e large. For instance,
for e > 3 one has that |L5000, 5000, 8192(e) − R(e)|, in the runs done, is below
0.00325. The situation is worse for small e because the difference reaches
the value − 0.105 for e=0.55. If we proceed to compute the relative error
(r.e.)=(L5000, 5000, 8192(e) − R(e))/R(e) the agreement is even worse. For
e=1 one has r.e. % − 0.14 and r.e. < − 0.9 if e < 0.42. In these comparisons
one should take into account that the discrepancies also include the errors
done in the estimates of L(e) (see Sections 6.3 and 6.4). But the present
results already indicate that the differences for e small are not only due to
statistical errors. To make this more evident some additional computations
have used a total number of iterates (for some selected e) with MrMpN
largely exceeding 1012.

Furthermore it seems also clear that for e < 0.3 there is a ‘‘saturation’’
in the behavior of the estimates of LMr, Mp, N(e) and of the standard devia-
tions. Indeed, it can be seen that the trend on the figure changes completely
(this is also the purpose to use logarithmic scales). Systematic errors occur
which completely invalidate the statistical results. To make this more
evident some values, for e in the range [0.2, 0.3], computed also in a pro-
babilistic way but with a different estimator (see Section 6.3) are also
shown as dots in the lower left part. For these computations Mr=14400,
Mp=16384, and N=16384 have been used.

The maximal value l1, max(e) of l1(x, g p fe) for x ¥ S2 and g ¥ SO(3) is
larger than R(e). This requires samples with Mr, Mp large to be detected if
e is small. It will be clear from Section 7 and the upper formula in (10) that
the quotient q(e)=l1, max(e)/R(e) is unbounded if e Q 0. If large values of e

are considered, it is observed that q(e) tends slowly to 1 when e Q .. In
fact it follows from the lower formula in (10) and the analysis in Section 7
(which is partly valid for any e) that the difference l1, max(e) − R(e) is
bounded by 2 − log(2)+O(e−1). To see differences close to the bound one
has to use very large values of Mr, Mp.

• The estimates of sS2 are mildly sensitive to the concrete values of
Mr, Mp, and N, provided these values are not too small, and assuming
0.3 < e < 3. For e > 30 a clear dependence with respect to N, of the form
N−1/2, is seen. From e=3 to e=30 there is a gradual increase in the
dependence with respect to N. For e < 0.3 a tendency towards a behavior
of the form N−1, which increases when e decreases, is clear.
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If extremal values of sS2 are considered when a sample of g is taken, it
is clear that the minimum must be zero. But there is a significant difference
for e < 2, because the minimum is already close to zero for samples of
moderate size, while for larger e the minimum, which is almost insensitive
to e goes to zero slowly when Mr increases. On the other hand, the
maximum of the observed values of sS2 increases until e % 10. It only stabi-
lizes to a value with small dependence on e for e % 100.

• The values of stotal are much larger than sS2 for e > 1, while for
e < 0.3 they are essentially equal. In particular they have a small depen-
dence with respect to Mr, Mp, and N, if these are not too small and
assuming e > 0.3.

An analysis of the reasons of the observed behavior is useful because it
helps in three different aspects: (a) to understand the different contribu-
tions to the errors in the estimates of L(e); (b) to see the main differences
between the cases of random and deterministic maps; and (c) to suggest
alternative methods to obtain better estimates.

• In the deterministic case the dynamics on S2 for a given rotation g is
relevant. This dynamics is ‘‘destroyed’’ (or ‘‘smoothed,’’ ‘‘averaged’’) in the
case of random maps. Hence, the initial point is irrelevant and the esti-
mates improve in a probabilistic way, depending on the total number of
iterates MN, in the random case.

• Changing g in the deterministic case produces dramatic changes in
the dynamics and, hence, on l(g p fe). This is specially clear for g close to
the identity (axis close to the pole or small rotation) or for rotations of
angle very close to p around an axis of small latitude. The variability of
l(g p fe) with respect to g is a major source of dispersion in the results,
specially for large e. A standard deviation stotal around 0.4, mainly due to
the variation of l(g p fe), would require sampling with Mr of the order of
108, at least, to have accurate results.

• For a fixed g, changing x ¥ S2 has a very mild effect for large e.
Despite the possible existence of tiny islands (see Section 7) the dynamics
‘‘looks’’ ergodic. A similar behavior has been observed for standard–like
maps in ref. 15 and in the case of volume preserving flows it is seen in
ref. 1, where an analysis of the places where the islands should be expected
is carried out before finding them explicitly.

Figure 3 displays a sample of orbits in S2 for fixed g and two different
values of e. For e=0.3 the dynamics is mainly dominated by an integrable
behavior, with many invariant curves and small chaotic seas, the largest
one seen in the front part. This is persistent with respect to changes in g.
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Fig. 3. Left: 3D view of orbits in S2 for e=0.3. In SO(3) a rotation of angle h and axis of
latitude b with (b, h)=(18

25 2pc, 3
25 2pc, c=( `5 − 1)/2) as in Fig. 4. A total of 128 random

initial points has been taken and for each point 1024 iterates have computed. Points on the
back have been plotted only partially and with smaller dots. Right: Vertical projection on the
horizontal (x, y)-plane of points with z < 0 for e=2 and same h and b as before.

The system is even more integrable (that is, invariant curves fill up a larger
area) for most of the rotations g ¥ SO(3). For e=2 (which is not so large!)
only minor islands subsist, and they can even disappear for different g. For
values like e=10 it is hard to see any island unless g is selected on a set of
small measure. In the random case one observes a uniform distribution of
iterates in S2 and the same is essentially true for large e in the deterministic
case.

• On the other hand, for fixed g and small e the value of l1(x, g p fe)
depends strongly on x. But the behavior is typically rather sharp. Either
one obtains a moderate value of the order of e1.5 or it is zero. The smaller
the value of e, the larger the measure of the x with exponent zero, of
course. The average value can be very small and despite the standard
deviation sS2 also being small, large samples with respect to x have to be
taken if small relative errors are desired.

• The worst point concerning accuracy, especially for small e, are the
errors in the computation of l1(x, g p fe). Indeed, for an integrable motion
(e.g., x in an invariant curve) l1 is zero, but the estimates 1

n log ||Tx fn|| are,
generically, of the order of log(n)

n . This implies that the convergence to zero is
slow. For large e this effect is relatively not so dramatic, but oscillations in
the behavior of the quotients and different trends can be expected.
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6.3. Improved Procedures

Several alternative procedures have been used in previous computa-
tions to determine the maximal Lyapunov exponent of a given map,
averaged on the phase space:

(1) If the dynamics has a uniform hyperbolicity but with superim-
posed strong periodic or quasiperiodic oscillations, the following strategy
has been used in ref. 16. It consists in detecting, by an iterative procedure,
an upper envelope of the plot of the quotients 1

n log ||Tx fn|| as a function
of n. Then, and after skipping a transient regime, one fits a function of the
form a+b/n to the envelope. The value of a is a good estimator for
l1(x, f) and, as the system in ref. 16 is a skew product with linear action
on the fibers, the value of x is irrelevant.

(2) If the values of l1(x, f) depend strongly on x, it is possible to
divide the phase space in pixels of a given size (in general, d-dimensional
pixels) and start the computations at a point in each pixel. However, if the
number of pixels is large and the system depends on several additional
parameters, the method can be prohibitive from a computational point of
view. Then, together with each initial pixel one considers all the pixels
visited by the orbit. The estimated Lyapunov exponent is assigned to all of
them. One requires each pixel to be visited a minimal number of times (in
case of need one takes several initial points in the pixel) and an averaged
Lyapunov exponent is assigned to the pixel. Later on this is averaged over
the full phase space.

This method has been used in ref. 17 to study the classical Hill’s
problem and how the degree of chaos behaves with respect to the energy.

One should also take into account the stickiness of invariant curves.
An initial point in a chaotic sea can remain close to an island for a large
number of iterates. Hence, it is a good strategy to take a larger number of
initial points even if one has to decrease the number of iterates for each
one, provided this number is not too small. Furthermore, the local slope of
log ||Tx fn|| can have quite different trends if the number of iterates is large.
Statistically this is not a problem because the interesting magnitude is the
average behavior.

(3) The previous method still suffers from slow convergence of the
quotients to l1(x, f). An alternative method has been used in the context
of flows with applications to galactic potentials in ref. 18 and later on
extended to discrete transformations in ref. 19, where references to other
applications can be found. It is mainly intended to discriminate between
regular and chaotic motion (that is, to decide if one can accept l1(x, f)=0
or not), but it also supplies an estimate of the Lyapunov exponent.
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Given a map f, an initial point x on a manifold M and a random
vector t ¥ T1, xM, let t0=t and define tk=(Tf k − 1(x) f)(tk − 1). For fixed
integers m and n and N > 0 let

Ym, n(N)=Nn C
N

k=1
log 1 ||tk ||

||tk − 1 ||
2 km, Yam, n(N)= C

N

k=1
Ym, n(k).

Then, for a chaotic orbit the estimator

Ŷm, n(N)=(m+1)(m+n+2)
Yam, n(N)
Nn+m+2 (12)

tends to l1(x, f), while for a generic regular orbit it behaves like
(m+1)(m+n+2)

m(m+n+1)
1
N . The basic idea is to average the exponential rate of increase

of the length of tk so that the transience has small relevance and to smooth
out the irregularities of the quotients. Hence, it is a measure of the mean
exponential growth of nearby orbits (MEGNO) and depends on the couple
(m, n). Suitable values (according to numerical experience) are m=2,
n=0, and then it is denoted as MEGNO20.

For (m, n)=(2, 0) a slightly better estimator for l1(x, f) is obtained
by using 12 Ya2, 0(N)

N4+4N3+5N2 . Furthermore, when this method is used with these
(m, n), one can check for a behavior of the form 2

N to decide l1(x, f) % 0.
Typically Ŷ2, 0(N) − 2

N=O(N−2) for regular orbits.
Given a maximal number of iterates Nmax to be used in the estimates,

an additional question is whether it can be better to use another value
N < Nmax as a better choice to estimate l1(x, f). In ref. 19 a ‘‘right stop’’
criterion is introduced. It is specially relevant if the orbit is close to be
regular, to prevent an overestimate of l1(x, f), but it has not been used in
the present computations.

Figure 4 illustrates the different behavior of MEGNO20 and the quo-
tients in formula (1) in several cases. Details on the parameters used for the
plots are as follows.

On the upper row, left plot, for e=0.3 a rotation of angle h and axis
of latitude b with b

2p
= 3

25 g, h

2p
=18

25 g where g=(`5 − 1)/2 has been selected.
Random initial conditions are chosen. After a transient of 512 iterates,
estimates of l1(x, f) are produced and plotted for the next 2048 iterates.
Solid lines (the lower ones) correspond to the estimates using MEGNO20,
while discontinuous lines are produced by the classical formula. The middle
part displays a similar plot for different initial conditions and the right part
is similar to the middle one but for e=10.
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Fig. 4. Upper row: An illustration of different computations of the largest Lyapunov expo-
nent. Left: A regular orbit for e=0.3. Middle: An irregular orbit also for e=0.3. Right: An
irregular orbit for e=10. Lower row: Estimates of the largest Lyapunov exponent for random
initial conditions. From left to right deterministic cases with e=0.3 and e=3 and a random
case with e=0.3. See the text for details.

On the lower row estimates of the largest Lyapunov exponent for
random initial conditions are shown. On the left part e=0.3 and h and b

as before have been used, and 512 random initial points are plotted. Solid
(resp. discontinuous) lines correspond to MEGNO20 (resp. classical) esti-
mators. Transient and number of iterates are as before. The left (middle)
plot in the upper row corresponds to number 4 (43) of these points. The
middle part is similar but for e=3. For completeness estimates in the
random case using finite n in (4) are also shown on the right for e=0.3.
Each iterate uses a random element in SO(3) with density r̂(b, h)=
cos(b)(1 − cos(h))/(2p). The solid line shows the value of R(0.3) %

0.0547518.
See also ref. 20 for additional methods and applications.
Due to the good properties of the procedure, estimates of l1(x, g p fe)

have been computed using procedure (3) earlier. For the integrations in
S2 a Montecarlo method has been used. This is good enough for large e,
because of the mild dependence of l1(x, g p fe) with respect to x (for, say,
e > 1) for most of the x ¥ S2 and most of the g ¥ SO(3). For e small and
especially if e < 0.3, a method such as the one presented in (2) would be
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suitable, but there are additional problems, due to the smallness of the
Lyapunov exponents, to be discussed later. Furthermore it will turn out
that it is relevant to compute L(e) with a small relative error for large e, to
allow for a careful comparison with R(e). But for e small it will be clear
from the results, even those obtained with a moderate accuracy, that L(e)
is far below R(e). In any case, it seems that numerical estimates of L(e) for
e < 0.3 with small relative error require an enormous computational effort.

Finally, for the integrations in SO(3) and taking into account the large
standard deviation found for moderate and large values of e, it has been
found more convenient to use numerical quadrature formulas based on a
grid of points. More concretely, a product Simpson method has been used
with respect to the latitude bg of the axis of rotation and the rotated
angle hg. The longitude of the axis lg is irrelevant: changes in this longitude
are equivalent to changes in the longitude lx of x ¥ S2. Using a grid with
hg ¥ [0, 2p], bg ¥ [0, p/2] requires that the estimate of l(g p fe) be mul-
tiplied by the factor cos(bg)(1 − cos(hg)).

Initial estimates for the results shown in the next Section use, for the
elements in SO(3) the following data: lg=0, (hg, bg) on a grid of Mg × Mg

with Mg=200. Then a sample of Mp=1600 random initial points and
tangent vectors in PS1 and N=8000 iterates are used. The programs have
been done in such a way that beyond the estimates for these values, also
estimates using grids with Mg=100, 50 or using samples with Mp=800,
400, 200, 100 and doing a number of iterates equal to N=4000, 2000,
1000, 500 are computed. This allows for a check on the internal consistency
of the results.

It turns out that the use of different grids in SO(3) stabilizes quickly.
Concerning the dependence with respect to Mp and N, it is clearly seen that
there is no need for very large values of Mp except in the case of small e

and one is interested in having small relative error. The dependence with
respect to N is clearly of the form ctant/N. Hence, extrapolations with
respect to N have been used. The initial estimates allow for a fine tuning of
the most suitable values for the grid, Mp and N. For instance, assuming
that one can accept a total of 241 iterates (for every value of e), for large e a
typical choice is Mg=28, Mp=29, N=216, while for small e it is Mg=27,
Mp=210, N=217. Even with this large N the results start to be not very
good if e < 0.2.

Figure 5 shows 3D views of h(hg, bg, e)=l(g p fe) cos(bg)(1 − cos(hg))
× p

2 as a function of (hg, bg) for different values of e. Level lines of these
surfaces are displayed in Fig. 6. The plots give a good evidence of the
smooth behavior of h(hg, bg, e) for moderate and large values of e, and
how the behavior becomes wilder, with sharp changes for small e. It is
clear that the results are the same if (h, b) is replaced by (2p − h, −b).
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Fig. 5. Plots of the average exponent l(f) as a function of (b, h) for the elements in SO(3).
The displayed values have been already corrected by the factor cos(b)(1 − cos(h)) p/2. The
four plots correspond to different values of e (10, 3, 1, 0.5) as shown.
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Fig. 6. Level lines of the surfaces shown in Fig. 5. The distances between consecutive levels
are 0.5, 0.25, 0.08, and 0.025, respectively, for the decreasing values of e.
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Furthermore, note that for integer e the symmetries of g p fe imply that the
results should be the same if h is changed to 2p − h, as clearly seen in the
first three plots. For e=0.5 the lack of symmetry h Y 2p − h is clear, but
for large non-integer e this lack of symmetry is harder to detect.

6.4. A Sample of Results

The results of applying the methodology just described are shown in
Fig. 7. Typical values for the number of iterates, initial data and grid have
been given before.

On the top plots general views of R(e) and estimates of L(e), to be
denoted as L(e)num, can be seen. In particular, for large and small e it is
easy to check the limit behavior of R(e) predicted by (10). On top left only
values e [ 10 are shown. On this scale no differences can be seen between
R(e) and L(e)num for e > 3. For small e the differences are clear and they
are quite dramatic for e < 0.4.

On the bottom left plot the tiny differences L(e)num − R(e) are
displayed. It seems that they tend to 0 as e Q ., in agreement with the
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Fig. 7. Results of the numerical computation of L(e). Upper row: Left: A general view
where the curve for R(e) is seen as the upper one. For larger values of e one cannot see the
difference with R(e). Right: A magnification for small e (in [0, 1]). Lower row: Left: The
small difference between L(e)num and R(e) for e large (in [5, 1000]). Right: The values of
L(e)num in logarithmic scale for e small.
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results in Section 8. Finally the behavior of L(e)num for e small is seen in
detail on the bottom right part. A logarithmic scale has been used to reveal
that log(L(e)num) is dominated by a function of the form − c/e for some
c > 0. Due to the smallness of the estimates and to the fact that it would
require an enormous effort to estimate L(e) for e close to 0.1 (unless other
methods, from deterministic analysis, are used), it is not completely clear
what the correct behavior is. Even with a reduced set of data a fit of the
values obtained for 0.16 [ e [ 0.3 gives a result of the form

log(L(e)num) % 2.45 −
3.16

e
(13)

which must be taken with caution, but seems to give the correct trend. This
suggests that the inequality in Question 1.1 is not satisfied for small e,
which will be confirmed theoretically in Section 7. This fact is not a
surprise, because similar facts occur in generic analytic families of area-
preserving diffeomorphisms. The smallness of the Lyapunov exponent is
related to the area of the chaotic seas which in turn is related to the split-
ting of the separatrices of fixed and periodic point for maps close to the
identity. See ref. 21, where general upper estimates can be found. In fact, as
with many a priori exponentially small upper bounds, this result can also
be obtained as a corollary of averaging theory for analytic systems, see
ref. 22 and also Section 7.2.

Finally it should be mentioned that some computations have been
done for large values of e (up to 106). Due to the strong chaotic properties
it is enough to take small values (say Np=256) of the number of initial
points in S2. But the grid in the parameters (hg, bg) has to contain more
points. Typical values of Ng to have a good determination of L(e)num are 29

and 210. The results confirm what is seen in the left lower part of Fig. 7,
that is, L(e)num > R(e) and the difference goes to zero slowly.

7. THE CASE OF SMALL e

As it is clear that the greatest problems occur for small e, it is worth
to carry out a preliminary analysis of the dynamics in this case. The first
item to be studied is the location and stability of fixed points. This can be
carried out, with the same effort, for any e. Furthermore this allows us to
see how bifurcations give rise to new elliptic fixed points with the corre-
sponding creation of islands. Later on the global behavior of g p fe on S2 is
discussed. In what follows it is assumed that e > 0.
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7.1. Fixed Points and Their Stability

To look for fixed points of g p fe it is enough to consider axes of rota-
tion with zero longitude. Let (b, h) be the latitude of the axis and the angle
of the rotation. As follows from Section 5.1, it is not restrictive to assume
b ¥ [0, p/2]. Then a fixed point A is mapped by fe to a point AŒ which by
g returns to A. Let b be the latitude of A. It is clear that A and AŒ must
have symmetric longitudes, − d(b) and d(b), respectively, where d(b)=
p

2 e(1+sin(b)). It is easy to derive the condition for the fixed points

sin 1h

2
2 sin(b) cos(b) cos(d(b)) − sin 1h

2
2 cos(b) sin(b)

+cos 1h

2
2 cos(b) sin(d(b))=0. (14)

For e small one has sin(d(b))=O(e) and cos(d(b))=1 − O(e2). For the
analysis of this case it is more convenient to write (14) in the form

sin 1h

2
2 sin(b − b) − e2 p2

4
sin 1h

2
2 sin(b) cos(b)(1+sin(b))2

+e
p

2
cos 1h

2
2 cos(b)(1+sin(b))+O(e3)=0. (15)

From (15) it is clear that if sin( h

2 )=O(1), that is, h is not too close to
0 from the positive or the negative side, then one has solutions for b of the
form

b=b+ce+O(e2) or b=p+b+ce+O(e2),

where c is independent of e. The value for c is given by

c=
p

2
cos(b)(1 ± sin(b));tan 1h

2
2 ,

where the + sign is used in the first case and the − sign in the second. In
both cases b is close to either b or b+p and an important thing is that
there are exactly two fixed points for g p fe.

Otherwise one can write h=mpe, m > 0 or h=2p+mpe, m < 0. The
dominant terms in (15) become in both cases

m sin(b − b) − cos(b)(1+sin(b))=0. (16)
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Equation (16) has to be seen as an equation for b depending on b and m
(which accounts for h). As it has zero average it should have at least two
different zeros. To look for more solutions it is relevant to compute the
lines (in (b, m)) where double zeros occur. The angle b can be used to
parameterize these lines. They are represented as

m2=2+sin3(b) − 3
4 sin2(2b),

b=b − arg[sin(b) − cos(2b) − ` − 1(cos(b)+1
2 sin(2b))].

(17)

As b ¥ [0, p/2], inspection of (16) shows that no double zeros can occur in
the case m > 0. Hence the value of m is confined to [−2, 0]. The bounds on
b also imply that the parameter b in (17) has to be in [p/2, 3p/2]. It is
elementary to discuss the behavior of (m, b) as a function of b. It is better
seen by looking at Fig. 8. It can just be said that two curves of double zeros
appear with b ¥ [p/4, p/2]. They meet at m=−`2, b=p/4, where a
triple zero appears. Between both curves there are exactly four zeros.

When additional powers of e are included, a routine application of the
Implicit Function Theorem permits us to conclude the same behavior for
the full equation (14). It should be noted that b=p/2 has to be excluded
from the previous analysis: in that case the axis of rotation is also the axis
of the twist.

The preceding analysis can be summarized as

Proposition 7.1. For e small enough and any g ¥ SO(3) there are
always at least two fixed points of g p fe. Bifurcations to exactly four fixed
point appear for any longitude of the rotation axis and for latitude of
the axis and angle of rotation (b, h=p(2 − me+O(e2))) along two lines
described by formulae (17) when the parameter b ranges in (p/2, p) and
(p, 3p/2), respectively.

To discuss bifurcations of the fixed points for general values of e is an
elementary but cumbersome task. As an illustration the case of bifurcations
appearing on b=0 is presented. Then (14) reduces to

cos 1h

2
2 cos(b) sin(d(b)) − sin 1h

2
2 sin(b)=0 (18)

and the condition for a double root becomes

2
pe

tan 1pe

2
(1+sin(b))2=sin(b) cos2(b). (19)
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The degenerate cases |b|=p/2 must be excluded in (19). It is immediate
that new double fixed points appear on S2 with b=0 if and only if e is
a positive integer. The number of double fixed points with b=0 (and
some h) increases with e. Also from (18) it follows that new zeros appear
near h=0, one for h > 0 and the other for h < 0. These zeros move
towards h=p without ever reaching it. So, it is a simple matter to state
how many fixed points exist for b=0 (except at the bifurcation values
of e): there are at most 2(1+E(e)), where E denotes the integer part of e.
For a given non-integer e there are always values of h such that this
number 2(1+E(e)) is the exact number of fixed points. This has an ele-
mentary dynamical interpretation: new fixed points emanate from the
north pole of S2 when the rotation number of fe at the north pole (defined
by continuity) passes through 0 (mod 1).

To study the stability of the fixed points we recall that they are
generically elliptic (eigenvalues m in S1 0{ ± 1}), hyperbolic (real positive
eigenvalues) and hyperbolic with reflection (real negative eigenvalues). Let
E, H, R denote the number of fixed points of each type. Euler–Poincaré
formula gives E − H+R=2 (for simple fixed points). At the creation of
new fixed points E and H increase by 1. When double eigenvalues are
equal to − 1 then, generically, E decreases by 1 and R increases by 1.

An analytic discussion on the stability of the fixed points is elementary
(at least for small e) but cumbersome. It is worth mentioning that, for any e

the maximum eigenvalue at a fixed point is achieved on b=0 and has the
expression

mmax=
pe

2
+11+1pe

2
2221/2

. (20)

A sample of illustrations is shown in Fig. 8 having h/2p as horizontal
variable and b/p as vertical one. A region containing i (resp. j, k) fixed
points of type E (resp. H, R) is denoted as RkH jE i. On the top left plot
and for e=0.1 the two curves on the upper part of the plot are the curves
of double zeros given by (17). Only in the region bounded by them there
are 4 fixed points; the code is H1E3. The codes for the black, dark grey,
and light grey regions are, respectively, R2, E2, and R1E1. On the top right
plot, the value of e is % 3.456789. The region containing the point (0.5, 0)
has exactly 2 fixed points while the regions which contact with this one
through arcs have 4. The darker region has 6 and the small region near the
upper right corner has 10. The regions around h=0 have 8 fixed points.
The solid lines give the location of all bifurcations and changes of stability.

In the bottom left plot, computed for e % 9.876543, all the lines of
bifurcation or change of stability are plotted. The number of fixed points,
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Fig. 8. Illustrations on the number of fixed points and their stability for different values
of e. On the horizontal (resp. the vertical) axis the variable h/2p (resp. b/p) is displayed. Top
left: The different regions correspond to different number of fixed points or to stability
changes for e=0.1. Top right: Plot for e % 3.456789. Different grey levels correspond to dif-
ferent number of fixed points. The lines are drawn where stability changes occur. Bottom left:
For e % 9.876543 the lines of stability changes are show. The numbers refer to how many fixed
points exist in each region. Bottom right: Plot for e=0.5 where the level lines from Fig. 6 are
also shown. See the text for more details.

NFP, in the major regions is shown. The typical transitions are as follow:
Consider, for instance, a passage from NFP=16 to NFP=18 near b=0
with increasing h. First a line of creation of an elliptic and hyperbolic
points is found. One passes from a code R9H7 to R9H8E1. This is followed
by a change of stability by passing to R10H8. Later on, inside the region
with NFP=20, the points of R type become again of type E. So the code
passes, in the different changes, from R11H9 to H9E11.

Finally, in the bottom right plot, for e=0.5, regions similar to the case
e=0.1 can be seen, with a different configuration. The level lines of Fig. 6
are also displayed. It is checked that the highest levels correspond to
domains where the map has exactly one elliptic and one hyperbolic with
reflection fixed points. This fact is also present for smaller values of e.
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7.2. The Maps as Perturbed Twists

The object of interest is the global dynamics of g p fe in S2. To this
end it is convenient to write these maps in a slightly different, but equiva-
lent, way. For this study S2 will be taken as the sphere of radius 1 centered
at the origin. Instead of considering fe as a twist around the z-axis of angle
pe(1+z), it will be taken as a twist around the axis of zero longitude and
latitude b with angle of rotation around this axis of a point of coordinates
(x, y, z) equal to pe(1+x cos(b)+z sin(b)). Then, the rotation g is simply
a rotation of angle h around the z-axis, to be denoted by R (z)

h . Up to the
substitution of p/2 − b for b, the relative positions of the axes in this for-
mulation and in the previous one are equivalent.

It is instructive to first consider the case h=2p
p
q , where p, q are

coprime integers. Let us introduce d=p(1+x cos(b)+z sin(b)). Then

fe
Rx

y

z

S=Rx

y

z

S+ed R
−y sin(b)

x sin(b) − z cos(b)

y cos(b)

S+O(e2). (21)

The next step is the computation of the map Mq, h, b, e :=(R(z)
h p fe)q, the

parameter b being the latitude of the axis of fe. It is clear that at order zero
in e one has Mq, h, b, 0=Id. An elementary computation using formula (21)
for fe and the expression of d as a function of x, z, and b, gives

Mq, h, b, e=Rx

y

z

S R (z)
c
Rx

y

z

S+O(e2), (22)

where R (z)
c is now a rotation around the z-axis in each one of the horizontal

planes with angle of rotation depending on z as follows

c=peq(sin(b)+zP2(sin(b))), (23)

where P2 denotes the second Legendre polynomial (P2(w)=3
2 w2 − 1

2).
This result tells us that the rotation R (z)

h averages the effect of the map
fe in a good way. Let us remark that in (22) it is assumed p/q fixed and
e sufficiently small. From (23) it follows that the angle c is still small
provided that eq is small. In the trivial case p=0, q=1 the rotation is the
identity and then the twist can be be taken with b=p/2, recovering in
formula (23) the angle rotated in the twist.
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To pass to the general case for h one needs a preliminary lemma.

Lemma 7.2. Let r ¥ (0, 1) and N ¥ N. Let

Sr, N= 0
1 [ q [ N, 0 [ p [ q, (p, q)=1

5 p − r

q
,

p+r

q
6 .

Then, if N+1 \ r−1 one has [0, 1] … Sr, N.

Proof. Let a ¥ [0, 1]. If a=r/s ¥ Q with (r, s)=1 and s [ N, there
is nothing to prove. Otherwise consider the approximants to a given by the
continued fraction algorithm. Assume that p1

q1
and p2

q2
are consecutive

approximants with q1 [ N and q2 > N. Then

:a −
p1

q1

: [ 1
q1q2

[
1

q1(N+1)
[

r

q1
. L

Hence h

2p
can be written as p

q+
m

q , where |m| [ r, q+1 [ r−1, where r is
not specified for the moment. Hence one can represent the map g p fe as
something similar to the previous case, that is, a rotation whose angle is
a rational multiple of 2p, composed with a map close to the identity, by
writing

g p fe=R(z)
2pp/q p R (z)

2pm/qfe.

By a direct computation one obtains expression (22) again with the follow-
ing modifications:

• If the rational which approximates h

2p
is 0, then q=1 and there is no

average, so that we keep the map g p fe,

• The rotation is now c=peq(sin(b)+zP2(sin(b)))+2pm,
• The error terms are, uniformly in h, of the form O(e2q+r2

q ).

If one takes r=e2/3 then the maps (g p fe)q are, in all cases, e1/3-close to
the identity and the error terms are at most e4/3. Note that besides the
choice r=e2/3 there are other possibilities, but r=e2/3 is good enough
to prove Corollary 7.7. Finally, it is clear that (23), or the modification
just mentioned adding 2pm, is a twist except for b=bcrit such that
P2(sin(bcrit))=0 (bcrit=sin−1(1/`3)).

To summarize we state the following

Proposition 7.3. If h is not e2/3-close to zero and b ] bcrit the maps
g p fe for e small enough, have a power which is e1/3-close to the identity.
This power satisfies a twist condition of order at least eP2(sin(b)).
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Remark 7.4. Rotations g with small h are irrelevant, for the present
purpose, due to the Haar measure in SO(3), and a single exceptional case
(non-twist) is also unimportant. This will be seen later in detail.

Remark 7.5. In the case of small h it is still possible to show that
g p fe produces a twist effect on each meridian in S2. A problem which
appears though is that the angle rotated by the different points can pass
through an extremum, losing in this way the twist property. In fact this is
not so important because the existence of invariant curves when the twist
condition is lost at some point has been established in ref. 23. But this
refinement is not necessary in the present context.

Theorem 7.6. With the possible exclusion of an open set B in
SO(3) of small measure, there exist e0 such that for e < e0 the maps g p fe

have a dynamics exponentially close to an integrable flow in S2.

Proof. The proof is divided into steps.

1. The maps Mq, h, b, e, being a power of g p fe, have the same dynam-
ics as g p fe. In all cases (including q=1 and the exceptional value of b)
they are e1/3-close to the identity. Hence there exists a suspension given by
the flow of a 1-periodic vector field in S2 such that the time-1 map asso-
ciated to this flow coincides with Mq, h, b, e. The vector field is ‘‘slow’’ (of the
order of e1/3) and the dominant terms do not depend on time. See ref. 24
for details and an explicit construction.

It is relevant to note that the vector field is analytic with respect to the
phase space variables (that is, the points in S2) while the dependence in e is
discontinuous in SO(3) (moving h ¥ [0, 2p] changes the value of q), but
the relevant thing is that it is bounded in e. Furthermore the dependence
with respect to t can be made of class C r for any r > 0, but continuity in t is
sufficient for what follows. Furthermore the vector field is Hamiltonian.

2. The next step is to ‘‘average’’ the vector field with respect to t.
This is the content of Neishtadt’s theorem. (22) See ref. 25 for a detailed
proof. As a consequence the vector field can be written as an autonomous
part and a remainder which is exponentially small in the current small
parameter; that is, the remainder is bounded by exp(−ce−1/3) for some
c > 0. Furthermore, the averaged vector field is still Hamiltonian (see
ref. 26 for a sketch of the proof ).

3. As the averaged system is a Hamiltonian in S2, it is integrable and,
hence, foliated by invariant curves except on the separatrices, which are a
set of zero measure. Most of the invariant curves subsist as a consequence
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of Moser’s twist theorem. To this end one should have that the perturba-
tion is small compared with the twist condition. Hence, it is enough to
exclude a neighborhood of the critical latitude bcrit which can be taken also
exponentially small. Furthermore the set of points in S2 not covered by
invariant curves of the full system has a measure bounded by the square
root of the perturbation, again exponentially small in e.

Summarizing, when arbitrary g ¥ SO(3)0B are considered the
dynamics in S2 is ordered (the points lie on invariant curves) except for
points in a subset of S2 of exponentially small measure. Furthermore B

consists of a neighborhood of the identity of size O(e2/3) and a neigh-
borhood of bcrit which is exponentially small in e. L

Corollary 7.7. For e small enough L(e) < Ae3 for some fixed A > 0.

Proof. It is sufficient to make Remark 7.4 more explicit. The differ-
entials of the maps fe increase the length of the vectors in TS2 by a factor
of the form 1+O(e) and composing with g ¥ SO(3) produces no essential
changes in the factor. Hence the values of l1(x, g p fe) are bounded by Ce,
where C is a positive constant. The contribution to L(e) of the g to which
Theorem 7.6 applies is bounded by Ce times an exponentially small
amount. On the other hand the contribution of the excluded neighborhood
of bcrit is also exponentially small.

Therefore the main contribution to L(e) can only come from the
neighborhood of the identity excluded in Theorem 7.6. But the Haar
measure of this set is of the order of

F
e

2/3

0
(1 − cos(h)) dh=O(e2).

This bound and the previous one on l1(x, g p fe) give the result. L

If we want to consider more ‘‘realistic’’ upper bounds it is possible to
proceed along the ideas in Remark 7.5. A further consideration is that the
largest stochastic zones are typically associated to the splitting of separa-
trices of the hyperbolic fixed points. From ref. 21 it follows that the split-
ting can be bounded by

exp 1 −
c

log(mmax)
2 ,

where mmax is the maximal eigenvalue at the fixed points and c > 0. From
(20) one has that for e small log(mmax)=pe

2 +O(e2). This ‘‘heuristic’’ predic-
tion is in good agreement with the observed behavior for e small.
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8. THE CASE OF LARGE e

Let us call the subbundle of PS2 tangent to the invariant circles of fe

the horizontal bundle and denote it by H. As e Q ., a large portion of PS2

is sucked into a small neighborhood of H under fe#. The measure dg(H) on
PS2 that is atomic in each tangent space and supported on g(H) looks
more and more like an invariant measure for gfe, #. These measures
integrate to give Lebesgue:

m=F
g ¥ SO(3)

dg(H) dn(g).

This yields a heuristic argument for why the inequality in Question 1.1
should hold when e=.. In this section, we make this argument rigorous
by adding some d-noise in Fe, and replacing invariant measures with sta-
tionary measures. We prove:

Theorem 8.1. Let me, d be defined as in Section 3, and let je, d be the
density of me, d:

dme, d=je, d dm.

There exists C > 0 such that, for all e, d > 0,

||je, d − 1||1 < Cd−11e−1/2

where || · ||1 is the L1-norm with respect to Lebesgue measure m on PS2.

This has the corollary:

Corollary 8.2. There exists a C > 0 such that for all e, d > 0,

|R(e, d) − R(e)| [ Cd−11e−1/2 log e.

In particular, for all d > 0,

lim
e Q .

|R(e, d) − R(e)|=0,

where R(e, d) is the random diffused exponent defined in Section 3.

As we were finishing this paper, unpublished work of L. Carleson and
T. Spencer came to our attention. (5) For the standard map on the 2-torus:

ge: (x, y) W (2x+e sin(2px) − y, x)
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where e measures the strength of the nonlinearity, they prove that by
adding a noise of strength exp(−e2) to the element ge, a Lyapunov expo-
nent of order log e can be established.

Proof of Corollary 8.2. From the definitions,

R(e, d)=F
PS2

log ||Tfev|| dme, d(v)

=F
PS2

log ||Tfev|| je, d(v) dm(v),

whereas R(e) is the integral of log ||Tfev|| with respect to m. Hence,

|R(e, d) − R(e)|=:F
PS2

log ||Tfev|| (je, d(v) − 1) dm(v):

[ ||log Tfe ||. ||je, d − 1||1

[ Cd−11e−1/2 log e,

by Theorem 8.1. L

Proof of Theorem 8.1. SO(3) acts transitively on T1S2 by isometries
and with trivial stabilizer. From now on we identify points in T1S2 with
elements of SO(3), and use the group structure in writing our formulas. We
will use x, y, z to denote elements of PS2, p, q for elements of S2, and
(p, v), (q, w) for elements of PS2 (or T1S2).

Recall from Section 3 that

je, d=F
PS2

je, d, g dn(g),

where je, d, g is the fixed point of the operator Le, d, g defined by:

Le, d, gk(x)=
1

m(B(x, d))
F

(gfe Ä) − 1 B(x, d)
k(y) dm(y).

Setting

kd(x)=
1

m(B(e, d))
1B(e, d)(x),
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where e is the identity element of SO(3), we rewrite Le, d, g as:

Le, d, gk(x)=F
PS2

kd(x−1gfeÄ(y)) k(y) dm(y). (24)

Let Le, d=Le, d, e. It is clear from (24) that Le, d, gk(x)=Le, dk(g−1x).
Denote by Ke, d: PS2 × PS2

Q R+ the kernel of the operator Le, d, so
that

Ke, d(x, y)=kd(x−1fe Ä(y)).

Let p: PS2
Q S2 be the projection along tangent fibers. By averaging along

fibers, we shall approximate Ke, d by a new kernel K̂e, d that is constant
along fibers of the second PS2-factor. Define K̂e, d: PS2 × PS2

Q R+ by

K̂e, d(x, y)=F
p

− 1
py

Ke, d(x, z) dmpy(z),

where, for p ¥ S2, mp denotes the disintegration of m along the fiber p−1p.
For g ¥ SO(3), we obtain a new operator L̂e, d, g on L.(PS2), given by:

L̂e, d, gf(x)=F
PS2

K̂e, d(g−1x, y) f(y) dm(y).

Let L̂e, d=L̂e, d, e.
The next lemma shows that the operators L̂e, d, g have a good averaging

property when applied to densities of measures that project to Lebesgue
measure m on S2.

Lemma 8.3. Let K̂: PS2 × PS2
Q R+ be any L1 function such that:

1. for all p ¥ S2,

F
p

− 1p
F

PS2
K̂(x, y) dmp(x) dm(y)=1;

2. if p(y)=p(z), then for all x, K̂(x, y)=K̂(x, z).

For f ¥ L.(PS2), and g ¥ SO(3), define L̂gf ¥ L.(PS2) by

L̂gf(x)=F
PS2

K̂(g−1x, y) f(y) dm(y).
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Then:

(a) ĵg=L̂gj is the unique fixed point of L̂g, for any j ¥ L.(PS2)
that satisfies:

F
p

− 1p
j(z) dmp(z)=1,

for all p ¥ S2.

(b) for all x ¥ PS2, we have:

F
SO(3)

ĵg(x) dn(g)=1.

Remark 8.4. Lemma 8.3 applies to the operators L̂e, d, g. An example
of a function j that satisfies the hypotheses of Lemma 8.3 is the density
je, d, g, for any e, d, g. We do not use that ĵg=L̂gĵg below.

Proof of Lemma 8.3. Since it is constant along fibers of the second
factor, K̂ projects to a function on PS2 × S2, which we shall also call K̂.

For g ¥ SO(3), define ĵg by:

ĵg(x)=L̂g1(x)=F
p ¥ S2

K̂(g−1x, p) dm(p).

We compute directly that, for any j satisfying the hypotheses of (a),

L̂g(j)(x)=F
y ¥ PS2

K̂(g−1x, y) j(y) dm(y)

=F
p ¥ S2

F
z ¥ p

− 1p
K̂(g−1x, p) j(z) dmp(z) dm(p)

=F
p ¥ S2

K(g−1x, p) dm(p)

=ĵg(x).

To see that L̂gĵg=ĵg and finish the proof of (a) it is now sufficient to
verify that

F
p

− 1p
ĵg(z) dmp(z)=1.
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But ĵg(z)=L̂g1(z)=Lg1(z) since the function 1 is constant and hence
constant on fibers. Now Lg(1) is the density function of a measure on PS2

which covers Lebesgue measure on S2 and hence its integral on fibers
equals 1. This proves (a).

Integrating ĵg(x) with respect to g we obtain:

F
g ¥ SO(3)

ĵg(x) dn(g)=F
g ¥ SO(3)

F
p ¥ S2

K̂(g−1x, p) dm(p) dn(g)

=F
y ¥ PS2

F
p ¥ S2

K̂(y, p) dm(p) dm(y)

=1,

completing the proof of (b). L

Returning to the proof of Theorem 8.1, let ĵe, d, g=L̂e, d, g1=L̂e, d, gje, d, g

be the unique fixed point of L̂e, d, g given by Lemma 8.3. We now have:

||je, d − 1||1=>F
g ¥ SO(3)

(je, d, g − 1) dn(g)>
1

=>F
g ¥ SO(3)

(je, d, g − ĵe, d, g) dn(g)>
1
+>F

g ¥ SO(3)
(ĵe, d, g − 1) dn(g)>

1

[ >F
g ¥ SO(3)

(Le, d, gje, d, g − L̂e, d, gje, d, g) dn(g)>
1

+>F
g ¥ SO(3)

(ĵe, d, g − 1) dn(g)>
1

=>F
g ¥ SO(3)

(Le, dje, d, g p g−1 − L̂e, dje, d, g p g−1) dn(g)>
1

[ F
g ¥ SO(3)

||Le, dje, d, g p g−1 − L̂e, dje, d, g p g−1||1 dn(g)

where we used Lemma 8.3 to obtain the second to last inequality.
Propositions 8.5 and 8.6, which we state and prove below, now imply

that
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F
g ¥ SO(3)

||Le, dje, d, g p g−1 − L̂e, dje, d, g p g−1||1 dn(g)

[ C1d−3e−1/2 F
g ¥ SO(3)

||je, d, g ||. dn(g)

[ C2d−3e−1/2 F
g ¥ SO(3)

d−8 dn(g)

=Cd−11e−1/2,

completing the proof of the theorem. It remains to state and prove Propo-
sitions 8.5 and 8.6.

Proposition 8.5. There is a C > 0 such that, if e \ d−4, then for any
f ¥ L.(PS2),

||Le, d(f) − L̂e, d(f)||1 [ C ||f||. d−3e−1/2.

Proposition 8.6. There exists C > 0 such that, for all e > 0 and
d > 0,

||jE, d, g ||. [ Cd−8.

Proof of Proposition 8.5.

||Le, d(f) − L̂e, d(f)||1

[ ||f||. ||Ke, d − K̂e, d ||1

=||f||. F |Ke, d(x, y) − K̂e, d(x, y)| dm(x) dm(y)

=||f||. F :Ke, d(x, y) − F
p

− 1
py

Ke, d(x, z) dmpy(z): dm(x) dm(y).

Let x=(p, v), y=(q, w) be elements of PS2. For a fixed p, v, q, the
map w W Ke, d((p, v), (q, w)) is a constant multiple cd−3 of the characteris-
tic function for p−1q 5 fe

−1
# B((p, v), d). Note that, for any measurable set

B in a probability space with measure m, the average value of the function
|m(B) − 1B | is 2m(B)(1 − m(B)). It follows that:

||Ke, d − K̂e, d ||1

=2cd−3 F
(p, v) ¥ PS2

F
q ¥ f − 1

e B(p, d)
|b(p, v, q)(1 − b(p, v, q))| dm((p, v)) dm(q),

142 Ledrappier et al.



where

b(p, v, q)=mq(fe
−1
# B((p, v), d)).

We next show that for some k > 0, and for e > d−4, there is a set
G … PS2, with m(G) \ 1 − e−1/2 such that, for all (p, v) ¥ G, there is a set
GŒ=GŒ(p, v) … f−1

e B(p, d) with m(GŒ) \ m(B(p, d)) − e−1/2, such that, for
q ¥ GŒ,

b(p, v, q) [ ke−1/2 or b(p, v, q) \ 1 − ke−1/2. (25)

This implies that

||Ke, d − K̂e, d ||1 [ 2cd−3(ke−1/2m(B(p, d))+2e−1/2)

[ Cd−3e−1/2,

which implies the result.
Fix d < 1/2, and assume that e > d−4. For a > 0, denote by Ca the

a-neighborhood of the horizontal bundle H … PS2. In other words, Ca is
the set of lines in PS2 0p−1{NP, SP} at angle [ a with the latitudinal
circles.

It is not difficult to see that if the distance from p to the poles is
greater than e−1/4, then

mf − 1
e p(f−1

e# (Ce
− 1/2 5 p−1p)) \ 1 − e−1/2. (26)

Let G0 be the set of p for which (26) holds, and let G=p−1G0. Then
m(G) \ 1 − e−1/2.

Fix (p, v) ¥ G, and consider a point feq ¥ B(p, d) 5 G0. The intersec-
tion of B((p, v), d) with the fiber p−1feq is an interval I. If the endpoints
of I are disjoint from the interval J=Ce

− 1/2 5 p−1feq, then either I ‡ J or
I 5 J=”. In the former case, the length of f−1

e# I is greater than the length
of f−1

e# J, which by (26) is greater than 1 − e−1/2. In the latter case, the length
of f−1

e# I is less than e−1/2. Hence if we let GŒ=GŒ(p, v) be the set of
q ¥ f−1

e B(p, d) 5 G0 satisfying:

“B((p, v), d) 5 Ce
− 1/2 5 p−1feq=”, (27)

then (25) holds for all q ¥ GŒ. It remains to show that m(GŒ) \

m(B(p, d)) − e−1/2.
For (p, v) ¥ PS2, denote by S((p, v), d) the geodesic sphere of radius d

centered at (p, v), so S((p, v), d)=“B((p, v), d). We will use the following
lemma here and later in the proof of Proposition 8.6.
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Lemma 8.7. There exists C > 0 such that, for all (p, v) ¥ p−1p, and
all a > 0,

m(p(S((p, v), d) 5 Ca)) [ Cda.

Proof. The claim follows from the following facts:

1. On T1S2 0p−1{NP, SP}, the subbundle H (regarded as a submani-
fold) is uniformly transverse to the fibers of PS2.

2. There exists a C > 0 such that for all d sufficiently small, and for
all (p, v) ¥ PS2, the intersection S((p, v), d) 5 H is contained in a smooth
curve of length [ Cd.

The verification of these facts is left as an exercise. L

From Lemma 8.7 it follows that:

m(GŒ) \ m(B(p, d)) − m(G0) − m(f−1
e p(S((p, v), d) 5 Ce

− 1/2))

\ m(B(p, d)) − e−1/2.

This completes the proof of Proposition 8.5. L

Proof of Proposition 8.6. We know that jE, d, g is a function in L1

which satisfies, for all (p, v) ¥ PS2,

jE, d, g(p, v)=cd−3 F
f − 1

e# B(g − 1(p, v), d)
djE, d, g(q, w) dm(q) dmq(w) (28)

and, for all p ¥ S2,

F
p

− 1p
jE, d, g(p, v) dmp(v)=1. (29)

Then, by (28), the function jE, d, g is continuous, and therefore has a
maximum ME, d, g that we denote by M. The idea is that a Hölder constant
for jE, d, g can be estimated in terms of M. Reporting in (29) gives a bound
for M which is independent of e, g. Since we want to use (29) at the end,
it suffices to consider the Hölder constant along the fibers. So, let
(p, v), (p, vŒ) ¥ p−1p. We have:

|jE, d, g(p, v) − jE, d, g(p, vŒ)|

[ cMd−3m(f−1
e# B(g−1(p, v), d) Df−1

e# B(g−1(p, vŒ), d)),
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where m is Lebesgue measure on T1S2, and ADB stands for the set of points
which belong to only one of the subsets A or B.

Lemma 8.8. There exists C > 0 such that, for all v, vŒ ¥ T1, pS2,

m(f−1
e# B(g−1(p, v), d) Df−1

e# B(g−1(p, vŒ), d)) [ Cdd(v, vŒ)1/4.

Remark 8.9. In Proposition 3.3, we prove that jE, d, g is as smooth
as fe. The point of the arguments here is to get a Hölder constant inde-
pendent of e.

From this lemma, it then follows that M [ 5(Cc)4 d−8/2, since:

1=F
Tp S2

jE, d, g(p, v) dv

\ M F
.

−.

(1 − Ccd−2 |t|1/4)+ dt

=
2M

5
(Cc)−4 d8.

We now prove Lemma 8.8.
We have the two balls B((p, v), d)) and B((p, vŒ), d). Let a=`d(v, vŒ).

We may assume that a ° d. The set B((p, v), d)) DB((p, vŒ), d) meets the
fiber p−1q in a pair of intervals, each of length [ a2 ° `a. If the end-
points of these intervals do not lie in C`a, then the entire intervals must be
disjoint from C`a. In other words, if

p−1q 5 (S((p, v), d) 2 S((p, vŒ), d)) 5 C`a=”, (30)

then

p−1q 5 B((p, v), d)) DB((p, vŒ), d) 5 C`a=”. (31)

Let G … S2 be the set of q satisfying (30). By Lemma 8.7, m(G) \

1 − 2Cd `a.

Claim 8.10. There exists a C > 0 such that, for all a [ 1, p ¥ S2, and
e \ 0, if (p, v) ¨ C`a, then

||T(p, v) f−1
e, # |T1, p S2 || [ Ca−1.

Random Versus Deterministic Exponents 145



Proof. Recall that ||T(p, v) f−1
e, # |p − 1p ||=||Tp f−1

e v||−2. With respect to the
orthonormal basis of TpS2 of the form {e1(p), e2(p)}, where e1(p) ¥ H
points in the direction of fe-twist and e2(p) points toward the north pole
NP, Tp fe takes the form:

Tp f−1
e =11

0
−b

1
2 ,

for some b \ 0. A direct computation shows that there exists a constant
C > 0 such that, for all a, b \ 0, if the angle between a unit vector v ¥ R2

and the x-axis is greater than `a, then:

>11
0

−b

1
2 v>

−2

[ Ca−1

From this the claim follows. L

Claim 8.10 and (31) imply that for q ¥ G, the derivative of fe# on
p−1q 5 B((p, v), d) DB((p, vŒ), d) is bounded:

||T(q, w) fe# |T1, q S2 || [ a−1,

for all w such that (q, w) ¥ B((p, v), d)) DB((p, vŒ), d). But for q ¥ G,

mf − 1
e q(f−1

e# (B((p, v), d)) DB((p, vŒ), d) [ a−1mq(B((p, v), d)) DB((p, vŒ), d))

[ a−1d(v, vŒ)

=d(v, vŒ)1/2.

But then

m(B((p, v), d)) DB((p, vŒ), d) [ 2C1da1/2+C2d2d(v, vŒ)1/2

[ Cdd(v, vŒ)1/4,

completing the proof of Proposition 8.6 and of Theorem 8.1. L

9. DISCUSSION

We have wondered (2) about the relationship of the random Lyapunov
exponent of a measure on the space of volume preserving diffeomorphisms
of a manifold to the mean of the Lyapunov exponents of the individual
members. The point of the question we raised was to be able to conclude
that in a rich enough family of diffeomorphisms there must be some with
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positive Lyapunov exponents, that is to say positive entropy. At question is
what sort of notion of richness would make such a conclusion valid. We
even proposed that much more might conceivably be true, a lower bound
for the mean of the Lyapunov exponents in terms of the random exponents
for orthogonally invariant measures on volume preserving diffeomorphisms
of the sphere. The orthogonal invariance of the measure was to provide the
necessary ‘‘richness.’’

In the studied family strong numerical evidence has been found about
the existence of such a lower bound when the values of the stretching
parameter e are not too small. In some sense strong stretching has an effect
similar to randomization, but it depends in a clear way on the concrete
map. More concretely

• Even moderate values of e like e \ 10 are enough to have an average
of the metric entropy larger than the one corresponding to the random
map.

• There exist unbounded parameters e for which islands are born. The
range of existence of these islands is small, but only the islands associated
to fixed points have been considered.

• For small e the estimated average entropy seems positive and defi-
nitely to be much less than the one of the random map. The numerical
evidence is in favor of the existence of exponentially small lower and upper
bounds (in the present example, with an analytic family).

The problems in numerically estimating exponents and how to over-
come them have been discussed. A partial analysis of the family of maps
has been done for e small. Even a rough estimate of an upper bound of the
averaged entropy is enough to show that the this averaged entropy falls
below any constant multiple of the entropy of the randomized system, if e

is sufficiently small.
Finally, the effect of a small randomization of fixed size d of the indi-

vidual elements of the family Fe is considered. Now the mean of the local
random exponents of the family is indeed asymptotic to the random expo-
nent of the entire family as e tends to infinity; that is, R(e, d) and R(e) are
asymptotic.
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16. H. Broer and C. Simó, Hill’s equation with quasi–periodic forcing: Resonance tongues,

instability pockets, and global phenomena, Bull. Soc. Bras. Mat. 29:253–293 (1998).
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